
Adding constexpr and 
consteval support to Clad

GSoC 2024 - Midterm Progress



What are constexpr and consteval?

constexpr and consteval are keywords that let us specify whether a function, 
method or variable may be immediate. Such expressions can be possibly 
evaluated during the translation phase and in such case don’t make it into the final 
executable.



Why didn’t constexpr/consteval just work?

There were two main issues that stopped Clad from working with immediate 
functions:

- CladFunction stands in the middle of the user’s code and the generated 
derivatives, but it is not constexpr.

- constexpr/consteval expressions are evaluated and folded before Clad 
receives the AST, from which it generates derivatives.



Issue one: non-constexpr CladFunction

The differentiate and execute 
calls are not in the same constant 
evaluation context.

These methods aren’t 
constexpr, even if the user’s 
code and the derivative are, we 
would exit the constant 
evaluation context “in the 
middle”.



Issue one solution

1. Converted methods of CladFunction to all be constexpr.

2. Replaced usages of printf and assert with compile-time friendly 
alternatives.
a. Checking if clad.so was loaded was previously done with an assert, but I replaced that with 

a macro, which works at compile-time.
b. Most of the places that had printf’s could be replaced with static_assert’s.



Issue two: Clad doesn’t see constexpr functions

Clad works by registering callbacks with clang for the different events during 
AST generation, but then it delays processing, until the whole AST is available. 
This is done to support the cases, where the declaration and definition are not in 
the same top-level decl, but that’s not possible with constexpr anyways.

If we tried to run Clad with a constexpr function and constexpr 
CladFunction we would see that the constexpr function doesn’t even reach 
Clad, it’s already evaluated and folded.



Issue two solution

1. Figure out how the clang constant expression evaluation works.

2. Modify HandleTopLevelDecl to find the nodes in the differentiation graph 
which are for constexpr functions and process those requests sooner.



constexpr and consteval working



What’s left to solve

After the former changes constexpr and consteval functions work as expected, but 
there is still some work left to do:

1. constexpr clad::tape
2. Improve the interface for differentiating and executing in constant contexts.
3. Create nicers demos and some more docs.



Questions?


