
Compiler Research

12.12.2024

Summary of Activities 2024
Vassil Vassilev

Clad — Enabling Differentiable Programming
in Science

Source Transformation AD With Clad

✤ Development
✤ Enable CUDA
✤ Extend Kokkos Support
✤ Rework Jacobians
✤ Implement Varied Analysis
✤ Support operators
✤ Enhance support of std::array, std::vector, std::tie,
✤ Constexpr support and clad::immediate_mode

✤ Scientific use-cases
✤ Towards supporting STL and Thrust

✤ Next milestone v1.8 is planned in the end of the month
3

https://github.com/vgvassilev/clad/milestones
https://github.com/vgvassilev/clad/milestone/9

Source Transformation AD With Clad

✤ Towards enabling clad in the field of High-Energy Physics
✤ Differentiable RooFit: Worked on enabling several large workflows

(order of 100K lines of code)
✤ Differentiable Combine: Adoption of the technique in CMS Combine
✤ Promising speedups

4

C++ as a service — rapid software development and
dynamic interoperability with Python and beyond

Hands on details can be seen in our showcase presentation.

https://compiler-research.org/meetings/#caas_20Sep2023

Status. Cling

✤ Being upgraded to llvm18 — complete. Released v1.2
✤ Upstreamed [Serialization] Support loading template specializations lazily

6

https://github.com/llvm/llvm-project/pull/119333#top

Status. Clang-Repl

✤ A good chunk of autoloading facilities is open against llvm in PR109913
✤ Making slow progress on:

✤ PR84769 — [clang-repl] Implement Value pretty printing for containers.
Value Handling (RFC)

✤ Simplified the value printing logic, broke cuda, working on fixing it

The goal is to provide better stability and robustness which can later cling can
reuse.

7

https://github.com/llvm/llvm-project/pull/109913
https://github.com/llvm/llvm-project/pull/84769
https://discourse.llvm.org/t/rfc-handle-execution-results-in-clang-repl/68493

Status. CppInterOp

✤ Enabled Wasm
✤ Enabled llvm-19
✤ Merged Add a libclang-style C API (337)
✤ Improved documentation
✤ Added support of externally created interpreters
✤ Started gradual adoption in ROOT
✤ Upstreaming PR 308 in llvm [ORC] Add Auto-Loading DyLib Feature with Symbol

Resolution
✤ This is the last missing element to deprecate completely xeus-cling in favor of xeus-

cpp
8

https://github.com/compiler-research/CppInterOp/pull/337#top
https://github.com/compiler-research/CppInterOp/pull/308
https://github.com/llvm/llvm-project/pull/109913
https://github.com/llvm/llvm-project/pull/109913

Status. Xeus-Cpp

✤ Compled on adding LLM support
✤ Working on merging more infrastructure xeus-clang-repl into xeus-cpp

9

Status. Xeus-Clang-Repl

✤ No updates

10

GSoC, IRIS-HEP, HSF-India 2024 Summary

CppInterOp in ROOT

✤ Jan 2024 -
✤ Adoption of CppInterOp in ROOT
✤ Rebased cppyy on our forks
✤ Implemented CI support for our cppyy forks
✤ Added template support to CppInterOp
✤ Brought the migration from 188 passing tests to 276 passing tests (out of

504)

Aaron Jomy
Research Intern at CERN

Info

12

https://compiler-research.org/team/AaronJomy

Adopting CppInterOp in cppyy

✤ September 2024 -
✤ Main focus is moving forward with replacing of ROOT in cppyy.
✤ Started with ~276 passing tests, now 328 passing out of 504
✤ Improved various of facilities in CppInterOp in the areas such of templates

instantiations and global operators.
✤ Improved the interactive dynamic differential debugging capabilities to

enable debugging complex workflows such as cppyy

Vipul Cariappa
Ramaiah University, India,

HSF-India
Info

13

https://compiler-research.org/team/VipulCariappa

LLVM.org Website Redesign

✤ May-Nov 2024 (ongoing)
✤ Reworked the old website
✤ Used Hugo — a static website generator
✤ Developed a new reusable, modern and mobile-friendly

theme
✤ Organized a community process in gathering and

addressing feedback
✤ To be enabled by default
✤ Blog entry

Chaitanya Shahare
GSoC24 National Institute of

Technology Srinagar, India

Info

14

https://compiler-research.org/blogs/gsoc24_chaitanya_shahare_introduction_final_blog/
https://compiler-research.org/team/ChaitanyaShahare

Improving performance of BioDynaMo
using ROOT C++ Modules.

✤ May-Nov 2024
✤ Enabled C++ Modules as optimization data

structure to help with slow startup times
✤ Presented the work at the 4th Mode Workshop in

Valencia
✤ Most of the work is merged in BioDynaMo

upstream a few elements still under review
✤ Blog entry

Isaac M. Santana
GSoC24, University of Granada,

ES
 Info

15

https://compiler-research.org/blogs/gsoc24_isaac_morales_wrapup_blog/
https://compiler-research.org/team/IsaacMoralesSantana

ROOT superbuilds

✤ May 2024 -
✤ Provide a way to build ROOT piecewise.
✤ Reworked the cmake infrastructure to allow for building each component

in isolation
✤ Improved C++ module definitions into separate modulemap files
✤ Work yet to be merged in ROOT
✤ Blog entry

Pavlo Svirin
GSoC24, Kyiv University,

UA
Info

16

https://compiler-research.org/blogs/gsoc24_pavlo_svirin_introduction_blog/
https://compiler-research.org/team/PavloSvirin

Integrate a Large Language Model with
the xeus-cpp Jupyter kernel

✤ May-Nov 2024
✤ Xeus-cpp is a C++ execution engine for Jupyter. The goal of the project was

to integrate a LLM service allowing people to interact with when
developing code

✤ Implemented a general approach to integrate large set of LLMs
✤ Blog entry

Tharun Anandh
GSoC24, National Institute of

Technology, Tiruchirapalli, India

Info

17

https://compiler-research.org/blogs/gsoc24_tharun_anandh_introduction_blog/
https://compiler-research.org/team/TharunAnandh

Support clang plugins on Windows

✤ May-ongoing 2024
✤ Clang plugins (Clad included) do not work on windows because LLVM

interfaces need to be annotated as “public”
✤ This is a huge project requiring touching thousands of header files. Some

changes are trivial some not.
✤ Large portion of work has been done (~1/3). Working on CI.
✤ Demonstrated decrease of on disk memory
✤ Meta issue

Thomas Fransham
GSoC24, UK

 Info

18

https://github.com/llvm/llvm-project/issues/109483
https://compiler-research.org/team/ThomasFransham

Out-Of-Process execution for
Clang-Repl

✤ May-ongoing 2024
✤ ClangRepl run the user code as part of the current process. Out-of-

process execution splits the user code from the process executing the
binary improving the crash resilience and security

✤ clang-repl --oop-executor=path/to/llvm-jitlink-executor --orc-
runtime=path/to/liborc_rt.a

✤ [ORC] Add Auto-Loading DyLib Feature with Symbol Resolution
✤ Enable Auto-Loading Support in Root/LLVM
✤ Blog entry

Sahil Patidar
GSoC24, Vindhya Institute of

Technology, India

Info

19

http://%5BORC%5D%20Add%20Auto-Loading%20DyLib%20Feature%20with%20Symbol%20Resolution
https://github.com/root-project/root/pull/17227
https://compiler-research.org/blogs/gsoc24_sahil_wrapup_blog/
https://compiler-research.org/team/SahilPatidar

Continuous Integration, CppInterOp,
Xeus-Cpp

✤ Development of the continuous integration system for our ecosystem including
clad, cppyy, CPyCpyy, cling-backend, CppInterOp and LLVM

✤ Increased testing coverage for CppInterOp
✤ Improved the Wasm Infrastructure
✤ Added llvm 18 and 19 support to CppInterOp
✤ Improved Windows support for CppInterOp
✤ Fixed all warnings so we could treat all future warnings as errors in CppInterOp

and xeus-cpp
✤ Added llvm 18 support to Clad for Linux
✤ Got CppInterOp available for multiple platforms for conda and in emscripren forge

Matthew Barton
Open Source Contributor

 Info

20

https://compiler-research.org/team/MatthewBarton

Xeus-Cpp, Wasm, Xeus

✤ Jan-ongoing 2024
✤ Maintaining work on xeus-cpp, Xeus and Xeus-zmq
✤ Enabled clang-repl in Wasm
✤ Improved CppInterOp for emscripten
✤ Packaging

Anutosh Bhat
Open Source Contributor to xeus-

cpp, CppInterOp, India
Info

21

https://compiler-research.org/team/AnutoshBhat

Add support for consteval and constexpr
functions in Clad

✤ May-Nov 2024
✤ C++ extensively uses compile-time metaprogramming with constexpr

and consteval keywords which force the compiler frontend to run
functions.

✤ Enabled constexpr and consteval support in Clad including making
CladFunction constexpr-friendly

✤ Implemented clad::immediate_mode
✤ Blog entry

Mihail Mihov
GSoC24, Stara Zagora Math High

School, BG
Info

22

https://compiler-research.org/blogs/gsoc24_mihail_mihov_introduction_blog/
https://compiler-research.org/team/MihailMihov

Implement Differentiating of the Kokkos
Framework in Clad

✤ May-Nov 2024
✤ Kokkos is a C++ library that enables writing performance portable codes.
✤ Developed an extensible system for defining library-specific push

forward and pullback operators in Clad
✤ Added support for several STL entities such as std::array and std::vector
✤ Lambda support still to be completed
✤ Presented the work at the 4th Mode Workshop in Valencia
✤ Blog entry

Atell Yehor
Krasnopolski

GSoC24, University of Wuerzburg, DE
 Info

23

https://compiler-research.org/blogs/gsoc24_atell_krasnopolsky_final_blog/
https://compiler-research.org/team/AtellYehorKrasnopolski

Optimizing automatic differentiation
using activity analysis

✤ May-ongoing 2024
✤ Presented the work at the 4th Mode Workshop in Valencia
✤ Implemented useful analysis capable of reducing the gradient size and

runtime
✤ Blog entry

Maksym Andriichuk
GSoC24, University of Wuerzburg, DE

Info

24

https://compiler-research.org/blogs/iris_maksym_andriichuk_introduction_blog/
https://compiler-research.org/team/MaksymAndriichuk

Clad Improvements

✤ Jan-ongoing 2024
✤ Restructured the system of storing and restoring original variables in the reverse mode. Simplified derivative

statements and improved readability/performance.
✤ Major simplification in error estimation, which made possible by the new storing/restoring system. Improved performance and

readability.
✤ Reimplemented jacobians using the vectorized forward mode. Improved the vectorized forward mode to prevent us from having

regressions in jacobians.
✤ Replaced clad::array_ref in the derivative signature in favor of pointers. Replaced clad::array with C arrays.
✤ Introduced type cloning to handle variable arrays.
✤ Refactored GlobalStoreAndRef (store/restore inside loops), call expression differentiation, etc.
✤ Simplified the generated code: getting rid of all useless goto/label statements, introducing placeholder expressions to simplify

multiplication differentiation results.
✤ Added support for new features: pointer-valued functions, pointer references, bitwise operators, basic cases of std::initializer_list,

multiple indices in clad::gradient calls, etc.
✤ Small bug fixes: type safety, store/restore statement emission, etc.

Petro Zarytskyi
Info

25

https://compiler-research.org/team/PetroZarytskyi

Clad Integration in RooFit

✤ Jan-Jun 2024
✤ Continued the work of Garima in RooFit where we flatten the compute

graph and build a gradient for it
✤ Enabled large a large workflow from ATLAS open data
✤ Added support for computing only the hessian diagonal
✤ Implemented the differentiation graphs
✤ Many bug fixes and support work

Vaibhav Thakkar
Info

26

https://compiler-research.org/team/VaibhavThakkar

Reverse-mode automatic differentiation
of GPU (CUDA) kernels using Clad

✤ May-ongoing 2024
✤ Enable CUDA support for both device and host functions
✤ Added CUDA builtins
✤ Enabled larger CUDA algorithms such as Black–Scholes
✤ Added write-race conditions synchronization primitives
✤ Added demos, benchmarks
✤ Improved documentation
✤ Blog entry

Christina Koutsou
GSoC24, University of

Thessaloniki, GR
Info

27

https://compiler-research.org/blogs/gsoc24_christina_koutsou_project_final_blog/
https://compiler-research.org/team/ChristinaKoutsou

Running CR

✤ Making sure all comes together.
Vassil Vassilev

Info

28

🙁

https://compiler-research.org/team/VassilVassilev

How does that fit together?

Our mission is to conduct research in foundational software tools and adapt
them for research in data science.
✤ We enabled Clad for large scale minimization fits in the field of High-

Energy Physics. Demonstrated 10x improvement in minimization times for
a single fit. Work is ongoing to make it available in flagship analysis tools
such as CMS Combine. ATLAS is next.

✤ CppInterOp is being picked up for xeus-cpp, wasm, ROOT and Julia
✤ Clang-Repl is being adopted in ROOT through CppInterOp

29

How does that fit together?

✤ Made progress on making LLVM more robust on Windows
✤ Contributed to the LLVM community with infrastructure needs such as

revamping the old website
✤ Continued to simplify cppyy using CppInterOp in efforts to connect both

C++ and Python ecosystems
✤ Expanded to new frontiers in terms of agent-based simulations with

BioDynaMo

30

Selected Papers

✤ Performance Portable Gradient Computations Using Source
Transformation, accepted in 8th International Conference on Algorithmic
Differentiation, September 16–20, 2024, Chicago Area, USA

✤ Optimization Using Pathwise Algorithmic Derivatives of Electromagnetic
Shower Simulations, accepted in Computer Physics Communications

31

https://www.autodiff.org/ad24/
https://www.autodiff.org/ad24/
https://arxiv.org/pdf/2405.07944
https://arxiv.org/pdf/2405.07944

Selected Talks

✤ Automatic Differentiation of the Kokkos framework and the STL with Clad,
4th Mode Workshop

✤ Advanced optimizations for source transformation based automatic
differentiation, 4th Mode Workshop

✤ Automatic Differentiation in RooFit for fast and accurate likelihood fits,
ICHEP

✤ Taking derivatives of Geant4 - closer than you might think?, CHEP

32

https://compiler-research.org/presentations/#AKMODE2024
https://compiler-research.org/presentations/#MAMODE2024
https://compiler-research.org/presentations/#MAMODE2024
https://indico.cern.ch/event/1291157/contributions/5889615/
https://indico.cern.ch/event/1338689/contributions/6015944/

Next Year Directions

✤ Increase the AD paper output
✤ Focus on AD non-HEP fields such as climate, floating point error

estimation, ml.
✤ Further develop scientific cases for BioDynaMo and cppyy.
✤ Continue evolving our ecosystem

33

Next Meetings

✤ Monthly Meeting — 9th Jan, 1700 CET/0800 PDT

If you want to share your knowledge/experience with interactive C++ we can
include presentations at an upcoming next meeting

34

Thank you!

