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Status. Cling

+ No news here: We need to fix 6 tests in Cling



Status. Clang-Repl

+ Incremental Input (REC)
+ D143142 — Enable Lexer to grow its butter
+ D143144 — Add TryGrowLexerBuffer/SourceFileGrower
+ D143148 — Add basic multiline input support

+ Value Handling (REC)
+ D141215 — Introduce Value and implement pretty printing

+ D146389 — Initial interactive CUDA support for clang-repl

The goal is to provide better stability and robustness which can later cling can reuse.
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https://discourse.llvm.org/t/rfc-flexible-lexer-buffering-for-handling-incomplete-input-in-interactive-c-c/64180/9
https://reviews.llvm.org/D143142
https://reviews.llvm.org/D143144
https://reviews.llvm.org/D143148
https://discourse.llvm.org/t/rfc-handle-execution-results-in-clang-repl/68493
https://reviews.llvm.org/D141215
https://reviews.llvm.org/D146389

Status. InterOp
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On the left, we compare template instantiations with std::tuple<double, double, ...>
where the number of template instantiations done by the C++ interpreter increases with the
number of template arguments. On the right, we compare instantiating nested templates,
for example, std: :vector<...<std::vector<double> >, where cppyy has to instantiate each
nesting individually from the innermost to the outermost class template. These are common
features of high-performance, templated numerics libraries that utilize template expressions.



Status. Clad

+ Several promising GSoC candidates applied. We might get good
contributions soon.



Status. Xeus-Clang-Repl

+ Started a new project Xeus-Cpp in collaboration with QuantStack. The idea
is to replace xeus-clang-repl and xeus-cling. Xeus-Cpp must be able to work
with upstream llvm and clang. It must also support running in a web
browser through WebAssembly.


https://github.com/compiler-research/xeus-cpp

Upstreaming Patches

+ Spreadsheet tracking the progress here.

+ Total amount of upstreamed cling patches 26(26+0) out of 52 upstreamable.


https://docs.google.com/spreadsheets/d/1BfQc4lzUFo3p162PJkA3InwiqVgRAbVQSvc0fNVA3n0/edit#gid=0

(LaaS Open Projects

+ Open projects are tracked in our open projects page.


https://compiler-research.org/open_projects

Next Meetings

+ Monthly Meeting — 4th May, 1700 CET /0800 PDT

If you want to share your knowledge / experience with interactive C++ we can
include presentations at an upcoming next meeting



Thank you!



