(i++ as a service — rapid software development and
dynamic iteroperability with Python and beyond

Interactive C++: cling and clang-repl

Garima Singh

06.04.2023

Status. Cling

+ No news here: We need to fix 6 tests in Cling

Status. Clang-Repl

+ Incremental Input (REC)
+ D143142 — Enable Lexer to grow its butter
+ D143144 — Add TryGrowLexerBuffer/SourceFileGrower
+ D143148 — Add basic multiline input support

+ Value Handling (REC)
+ D141215 — Introduce Value and implement pretty printing

+ D146389 — Initial interactive CUDA support for clang-repl

The goal is to provide better stability and robustness which can later cling can reuse.

3

https://discourse.llvm.org/t/rfc-flexible-lexer-buffering-for-handling-incomplete-input-in-interactive-c-c/64180/9
https://reviews.llvm.org/D143142
https://reviews.llvm.org/D143144
https://reviews.llvm.org/D143148
https://discourse.llvm.org/t/rfc-handle-execution-results-in-clang-repl/68493
https://reviews.llvm.org/D141215
https://reviews.llvm.org/D146389

Status. InterOp

B Memory used by original Cppyy s Time taken by original Cppyy
B Memory used by Cppyy w/ InterOp e’ Time taken by Cppyy w/ InterOp
0.09 142 1000 10000
0.08 140 100
=) © 1000 &=
@0.07 138 % =3 10 ECE’%»
2 0.06 36 % § = % -
+ Works with both Cl; d £ 4 "~ b
@ 0.05 134 & @z > B
orks with bo ing an ; i
0.04 132 & Z o =%
ClangRepl now
[]
0.02 128 0.001 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
° Number of tcmplate arguments Number of nested template instantiations
[]
* libInterOp-based cppyy: pass
130 / 4:98 teStS. Figure 3. Time taken and memory used during class template instantiation.

On the left, we compare template instantiations with std::tuple<double, double, ...>
where the number of template instantiations done by the C++ interpreter increases with the
number of template arguments. On the right, we compare instantiating nested templates,
for example, std: :vector<...<std::vector<double> >, where cppyy has to instantiate each
nesting individually from the innermost to the outermost class template. These are common
features of high-performance, templated numerics libraries that utilize template expressions.

Status. Clad

+ Several promising GSoC candidates applied. We might get good
contributions soon.

Status. Xeus-Clang-Repl

+ Started a new project Xeus-Cpp in collaboration with QuantStack. The idea
is to replace xeus-clang-repl and xeus-cling. Xeus-Cpp must be able to work
with upstream llvm and clang. It must also support running in a web
browser through WebAssembly.

https://github.com/compiler-research/xeus-cpp

Upstreaming Patches

+ Spreadsheet tracking the progress here.

+ Total amount of upstreamed cling patches 26(26+0) out of 52 upstreamable.

https://docs.google.com/spreadsheets/d/1BfQc4lzUFo3p162PJkA3InwiqVgRAbVQSvc0fNVA3n0/edit#gid=0

(LaaS Open Projects

+ Open projects are tracked in our open projects page.

https://compiler-research.org/open_projects

Next Meetings

+ Monthly Meeting — 4th May, 1700 CET /0800 PDT

If you want to share your knowledge / experience with interactive C++ we can
include presentations at an upcoming next meeting

Thank you!

