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* To enable rapid application development even with a complex codebase 1) 2] 3]
p N Scientific breakthroughs such as the discovery of the large void in the Khufu’s Pyramid, gravitational waves
Our approach is to generalize a high-energy physics analysis code (“Cling”) to a and the Higgs boson heavily rely on the ROOT software package
genera”y aCCGSSib|e and fUIly funCtionaI tOOI that iS pa rt Of LLVM/CIang [1] K. Morishima et al, Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons, Nature, 2017
- / [2] Abbott et al, Observation of gravitational waves from a binary black hole merger. Physical review letters, 2016
[3] CMS Collab, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 2012
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* LLVM community engagement / acceptance of CaaS concept and approach Static Comller compller A A Service
* |nitial release of Clang-Repl achieved in LLVM13 8 5 S
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* Clang-Repl based plugin (Clad) implemented and demonstrated including offload of calculations to GPU g 4 8
Project * LibIinterop design completed after extensive community discussion. Now co-developing with application s Continsous Optimization
: developers includin : : :
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 CPPYY package enabling run-time python <-> C++ bindings —— I S —

vvassilev@vv-nuc ~/.../build (« g mp 1 $ ./bin/clang-repl
-repl> #include "lzma.h"
repl> extern "C" int printf(const charx,...);
repl> %add-archive /usr/lib/x86_64-1inux—gnu/liblzma.a
a

* Xeus based Jupyter plugin supporting interoperability and data exchange between C++ and python v
Abstract machine PGO

(¢}

e

Q

=
S0

version=5.2.2

* Science applications include automatic differentiation, uncertainty quantification, and embedded device control Target machine
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CLAD: Source transformation Automatic Differentiation

CPPYY run-time bindings are first libInterop use case

Clad AD applied to statistical analysis problems

Project Results
and Applications

Basic Performance Test: empty call Clad is a Clang Plugin transforming the AST of the supported languages : G++, CUDA, C, ObjC

) ) Comparison of fitting time using Clad VS Numerical
ROOQOT is a data analysis software package used to process data Diff of objective function - fitting sum of gaussians
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Proposed CaaS programing model now realized in prototype S (= —— 5 o e B e
= Empty global function call is a pure overhead measure (zero work) double £(double x) { )]t x ‘Gomie! = = Patamela e
= pypy-c slower than C++ b/c of global interpreter lock (GIL) release return x * x; N iemyoperator double’ ‘s Thus, ROOT fitting class computes Vp(;(z) from Vp( f(x,p) Lorenzo Moneta 94th ROOT PPP Meeting
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Clang-Repl enables CaaS in LLVM starting with LLVM13

Setup Computation in Python

due> auto dumpOnUpdate(unsigned v) { static auto last = @Qu; if (v!=last) dump(v); last=v; return v; };
. 3:T> duTEOnUpdate(analogRead(AO))
(unsigned int) 15
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Plot the results in Python T | i | T '
In [3]: python - ‘ libInterOp Design
import matplotlib.pyplot as plt ROOT [liblnterOp] 1 C++ in notebooks] p g
plt.plot(nThreads, computed, linewidth=3) | | — | |
plt.xlabel('Number of threads"') - . O B . © ® _
plt-ylabel( 'Time to Complete' ) C++ as a service ~~~~ [Pyth i ter} : f
plt.ylim(ymin=0) ~ Svifs Julia LD | Ct+ as a service Case Study: Simpson’s Rule
plt.savefig('line_plot22.png"') S LR C] 3 Y P
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precision (long double)

Thanks to this project, we have grown a diverse user community around ctemmstpocsn | avsots| soerz o A

our technology including contributors from data science and industry. [=] 3 - || [
. (float) ' ' ) T

sl = sl + 4.0 * f(x);
X + h;
sl =s1+ 2.0 * f(x);
}

We established a monthly community meeting series to discuss results
S B N T T and applications. Visit us at https://compiler-research.org

Number of threads

“Demoting” low-sensitivity variables to lower precision improves
performance by ~10% in this example.

sl = s1 - fb;
Clad’s estimate also agrees that there is no significant change in the tmp = h / 3.0;
sl = s1 * tmp;
return si;
ground-truth comparison is not available. }

final error. This can be useful in the cases where an accurate
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