CSSI Element: C++ as a service - rapid software development and dynamic interoperability with Python and beyond
Princeton University: David Lange (Pl), loana Ifrim, and Vassil Vassilev . Open-source contributors, students, interns: Parth Arora, Sara Bellei, Purva Chaudhari, Anubhab Ghosh,

PRINCETON
UNIVERSITY

Award #: OAC.1931408 Matheus Izvekov, Manish Kausik, Sunho Kim, Baidyanath Kundu, Tapasweni Pathak, Rohit Rathaur, Garima Singh, Roman Shakhov, Surya Somayyajula, Jun Zhang
CaaS aims to provide programmers and data scientists a simple and general solution . | ! | 5522 \
to language interoperability: 5 e, e]
: * Advance interpretative technology to provide scientists a state-of-the-art C++ execution environment o P | ¥ "
Project N . . AN o » 5wk O ;
* Enable functionality to provide dynamic, native-like, runtime interoperability between C++ and Python iy P 5 i | il
. . 1 ' ' tand, ' ' [| LD | | L e
Goals * Allow seamless utilization of heterogeneous hardware (e.g., hardware accelerators) : L. . . | TR wm e e
* To enable rapid application development even with a complex codebase 1) 2] 3]
p N Scientific breakthroughs such as the discovery of the large void in the Khufu’s Pyramid, gravitational waves
Our approach is to generalize a high-energy physics analysis code (“Cling”) to a and the Higgs boson heavily rely on the ROOT software package
genera”y aCCGSSib|e and fUIly funCtionaI tOOI that iS pa rt Of LLVM/CIang [1] K. Morishima et al, Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons, Nature, 2017
- / [2] Abbott et al, Observation of gravitational waves from a binary black hole merger. Physical review letters, 2016
[3] CMS Collab, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 2012
. . . defer . .
* LLVM community engagement / acceptance of CaaS concept and approach Static Comller compller A A Service
* |nitial release of Clang-Repl achieved in LLVM13 8 5 S
Q T 3]
* Clang-Repl based plugin (Clad) implemented and demonstrated including offload of calculations to GPU g 4 8
Project * LibIinterop design completed after extensive community discussion. Now co-developing with application s Continsous Optimization
: developers includin : : :
Accomplishments X 5 . .. : : :
 CPPYY package enabling run-time python <-> C++ bindings —— I S —

vvassilev@vv-nuc ~/.../build (« g mp 1 $./bin/clang-repl
-repl> #include "lzma.h"
repl> extern "C" int printf(const charx,...);
repl> %add-archive /usr/lib/x86_64-1inux—gnu/liblzma.a
a

* Xeus based Jupyter plugin supporting interoperability and data exchange between C++ and python v
Abstract machine PGO

(¢}

e

Q

=
S0

version=5.2.2

* Science applications include automatic differentiation, uncertainty quantification, and embedded device control Target machine

Abstract user Concrete user(s)

—

CLAD: Source transformation Automatic Differentiation

CPPYY run-time bindings are first libInterop use case

Clad AD applied to statistical analysis problems

Project Results
and Applications

Basic Performance Test: empty call Clad is a Clang Plugin transforming the AST of the supported languages : G++, CUDA, C, ObjC

)) Comparison of fitting time using Clad VS Numerical
ROOQOT is a data analysis software package used to process data Diff of objective function - fitting sum of gaussians

. . ang Clang Bi E :
C++ (Cling w/ -O2; out-of-line 1.5 _— > > inary _) _ " | —e— NumbDiff
(Cling w t-otline) m Backend Clad has replaced numerical gradient calculations for formula 10000/ CE:D'
cppyy / pypy-c 16 based functions. 7
£ soooj—
o bt - Clad can: £
swig (builtin) « Produce the AST and pipe it to the backend The Clad gradient is then used to compute the gradient of the E ook
. . - 2 . | . . - c,
cppyy / CPython 68 « Decompile that AST into code - which is code : . goc/msve ?tt?ectwe function (5> or negative log-likelihood function) when £
_ one can compile with any other compilation Iung o L
pybind11 68 pipeline (gcc/ msve/ etc) and use it by plugging it N (Y- - f(x p))2 2000:
int s lib 2 : " -y
. : . swig (default) 104 o one s Thrary = Z 5 :
Proposed CaaS programing model now realized in prototype S (= —— 5 o e B e
= Empty global function call is a pure overhead measure (zero work) double £(double x) {)]t x ‘Gomie! = = Patamela e
= pypy-c slower than C++ b/c of global interpreter lock (GIL) release return x * x; N iemyoperator double’ ‘s Thus, ROOT fitting class computes Vp(;(z) from Vp(f(x,p) Lorenzo Moneta 94th ROOT PPP Meeting
—_— . = "Builtin” SWIg trades fu nctionality for speed } I'?’“"lic “““““““““““““““““““““““““““““““““ obtained using Clad * current implementation still requires one numerical gradient call
jupyter Clang-Repl C++ Python Integration DemO nsaved changes 'C e - There is no abvious benefit to "static* over runtime bindings s ower i better Gl Hassan ode ROOT rdcond s (s e s il e
\ - 3) Clad
File Edit View Insert Cell Kernel Help Trusted clang-repl O =D ¥ ENERGY
+ < & B 4 ¥ PRun B C MW Markdown v

Clang-Repl enables CaaS in LLVM starting with LLVM13

Setup Computation in Python

due> auto dumpOnUpdate(unsigned v) { static auto last = @Qu; if (v!=last) dump(v); last=v; return v; };
. 3:T> duTEOnUpdate(analogRead(AO))
(unsigned int) 15
tn 111: [0 Clang-Repl Design S e m— =ep
nTh read S= [1, 2 ’ 4, 8 ’ 16 ’ 32] ,‘ c(iltjn>‘gumEOoUpc)iaiz(analogRead(AO)) _E 3
numFlipS=1@®0000®00 ° ° , C/C++ Vin:ei:
nTrials = len(nThreads) I lbl ncremental DeSlgn ,/ l ue> du e(analogRead (A0))
, @ e(analogRead(AQ))
’ unsigne
. - . ,, [Compila,tion J B @’ @«, @ R B @ R [r]}ansformationsJ :e> while (dumpOnUpdate(analogRead(AQ)) > @);
Computationally intensive C++ code & use OpenMP to R (libIncremental) et s
speed it up [libIncremental] & ®) Sl ' TR
PR ® o N L,
In [2]: #include "coinflip.cc" s’ @ / P O
s >[MC (x86, NVPTX)} O b
std::vector<int> computed = timeIt(numFlips, nThreads, nTrials); LI : 0 C R A
[Cling Interpreter} » [Clang—Repl} | [Xeus—Repl} i :EEEE: i
Plot the results in Python T | i | T '
In [3]: python - ‘ libInterOp Design
import matplotlib.pyplot as plt ROOT [liblnterOp] 1 C++ in notebooks] p g
plt.plot(nThreads, computed, linewidth=3) | | — | |
plt.xlabel('Number of threads"') - . O B . © ® _
plt-ylabel('Time to Complete') C++ as a service ~~~~ [Pyth i ter} : f
plt.ylim(ymin=0) ~ Svifs Julia LD | Ct+ as a service Case Study: Simpson’s Rule
plt.savefig('line_plot22.png"') S LR C] 3 Y P
~ | Results
‘..' ‘... g Ent t
~ Ny Precision Absolute Clad’s Variables in
- ~ ~ configurations Error Estimated lower precision
Upperbound (out of 11)
) 10-byte extended 4.07e-14 3.1e-12 0 it n = 1600000

precision (long double)

Thanks to this project, we have grown a diverse user community around ctemmstpocsn | avsots| soerz o A

our technology including contributors from data science and industry. [=] 3 - || [
. (float) ' ') T

sl = sl + 4.0 * f(x);
X + h;
sl =s1+ 2.0 * f(x);
}

We established a monthly community meeting series to discuss results
S B N T T and applications. Visit us at https://compiler-research.org

Number of threads

“Demoting” low-sensitivity variables to lower precision improves
performance by ~10% in this example.

sl = s1 - fb;
Clad’s estimate also agrees that there is no significant change in the tmp = h / 3.0;
sl = s1 * tmp;
return si;
ground-truth comparison is not available. }

final error. This can be useful in the cases where an accurate

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

https://compiler-research.org/

