
Compiler Research

06.06.2024

Status And Plans
Vassil Vassilev

People

Pavlo Svirin
GSoC24, Kyiv University,

UA
ROOT superbuilds.

 Info

Isaac M. Santana
GSoC24, University of Granada, ES
Improving performance of
BioDynaMo using ROOT

C++ Modules.
 Info

Chaitanya Shahare
GSoC24 National Institute of

Technology Srinagar, India
LLVM.org Website

Redesign
Info

Riya Bisht
GSoC24, Graphic Era University,

India

Enable CUDA compilation
on Cppyy-Numba

generated IR.
 Info

2

https://compiler-research.org/team/PavloSvirin
https://compiler-research.org/team/IsaacMoralesSantana
https://compiler-research.org/team/ChaitanyaShahare
https://compiler-research.org/team/RiyaBisht

People

Atell Yehor
Krasnopolski

GSoC24, University of Wuerzburg, DE
Implement Differentiating of

the Kokkos Framework in
Clad
 Info

Khushiyant
GSoC24, G.G.S.I.P.U, India

STL/Eigen - Automatic
conversion and plugins for

Python based ML-
backends.

 Info

Tharun Anandh
GSoC24, National Institute of

Technology, Tiruchirapalli, India
Integrate a Large Language

Model with the xeus-cpp
Jupyter kernel

Info

Mihail Mihov
GSoC24, Stara Zagora Math High

School, BG

Add support for consteval
and constexpr functions in

clad
Info

3

https://compiler-research.org/team/AtellYehorKrasnopolski
https://compiler-research.org/team/Khushiyant
https://compiler-research.org/team/TharunAnandh
https://compiler-research.org/team/MihailMihov

People

Thomas
Fransham

GSoC24, UK
Support clang plugins

on Windows
 Info

Matthew Barton
Open Source Contributor

Continuous Integration,
CppInterOp, Xeus-Cpp.

 Info

Sahil Patidar
GSoC24, Vindhya Institute of

Technology, India
Out-Of-Process

execution for Clang-Repl
Info

4

https://compiler-research.org/team/ThomasFransham
https://compiler-research.org/team/MatthewBarton
https://compiler-research.org/team/SahilPatidar

Clad — Enabling Differentiable Programming
in Science

Source Transformation AD With Clad

✤ Released Clad v1.5
✤ Added support for new, delete, alloc, free
✤ Reduced size of the generated gradient code
✤ Simplified adjoints used for fp error estimation
✤ Delayed differentiation until the end of translation unit
✤ Removed array_ref dependency in the generated code

✤ Scientific use-cases
✤ RooFit’s Clad-based ATLAS Higgs combination benchmark works and scales well. Looking

into the CMS combine Higgs analysis with CMS open data. To be presented at ICHEP.
✤ Progress on supporting simulation code with HepEmShow.

✤ Next milestone v1.6 is planned in the end of the month
6

https://github.com/vgvassilev/clad/releases/tag/v1.5
https://github.com/mnovak42/hepemshow
https://github.com/vgvassilev/clad/milestones
https://github.com/vgvassilev/clad/milestone/6

C++ as a service — rapid software development and
dynamic interoperability with Python and beyond

Hands on details can be seen in our showcase presentation.

https://compiler-research.org/meetings/#caas_20Sep2023

Status. Cling

✤ Being upgraded to llvm18.

8

Status. Clang-Repl

✤ 7 merged contributions last two months: link
✤ 2 contributions updated last two months: link
✤ Making slow progress on:

✤ PR84769 — [clang-repl] Implement Value pretty printing for containers.
Value Handling (RFC)

✤ PR86402 — [clang-repl] Support wasm execution

The goal is to provide better stability and robustness which can later cling can
reuse.

9

https://github.com/llvm/llvm-project/pulls?q=is:pr+in:title+clang-repl+merged:2024-04-04..2024-06-06+
https://github.com/llvm/llvm-project/pulls?q=is:pr+%22clang-repl%22+is:open+updated:2024-04-04..2024-06-06+
https://github.com/llvm/llvm-project/pull/84769
https://discourse.llvm.org/t/rfc-handle-execution-results-in-clang-repl/68493
https://github.com/llvm/llvm-project/pull/86402

Status. CppInterOp

✤ Released v1.3
✤ Added code completion support
✤ Better packaging
✤ Better CI integration
✤ Initial Wasm Support

✤ CppInterOp.jl Julia package

10

https://github.com/compiler-research/CppInterOp/releases/tag/v1.3.0

Status. Xeus-Cpp

✤ CppInterOp v1.3.0 was integrated in xeus-cpp
✤ Working on merging more infrastructure xeus-clang-repl into xeus-cpp
✤ Released v0.5.0
✤ Releasing a major release to deprecate xeus-cling requires 1 feature to be

implemented wrt automatically loading of symbols.

11

Status. Xeus-Clang-Repl

✤ No updates

12

Open Projects

✤ Open projects are tracked in our open projects page.

13

https://compiler-research.org/open_projects

Next Meetings

✤ Monthly Meeting — 11th July, 1700 CET/0800 PDT

If you want to share your knowledge/experience with interactive C++ we can
include presentations at an upcoming next meeting

14

Thank you!

Lingo

✤ CppInterOp is a product of OAC-1931408 and exposes API from Clang and LLVM in a mostly
backward compatibe way. The API support downstream tools that utilize interactive C++ by
using the compiler as a service. That is, embed Clang and LLVM as a libraries in their
codebases. The API are designed to be minimalistic and aid non-trivial tasks such as language
interoperability on the fly. In such scenarios CppInterOp can be used to provide the necessary
introspection information to the other side helping the language cross talk. The package makes
it easy to deploy as it ships Clang as a service without any dependencies.

✤ Xeus-Clang-Repl is a product of OAC-1931408 that is a Jupyter plugin supporting C++
development based on ClangRepl.

✤ Xeus-Cpp is a product of OAC-1931408 in collaboration with the QuantStack company. It is a
Jupyter kernel for C++ based on the native implementation of the Jupyter protocol xeus. It is
supports the Wasm version of Jupyter – JupyterLite. Generalization of Xeus-Clang-Repl.

16

Lingo

✤ Cling The first C++11-compliant interpreter used in the field of High-Energy Physics
for data analysis and interoperability.

✤ ClangRepl is a generalization of Cling in LLVM/Clang upstream and is a product of
OAC- 1931408. It be more reliable, easier to deploy. It follows the best practices
adopted by the LLVM developers community. It supports CUDA, OpenMP and Wasm.

✤ Cppyy is an undervalued, cutting-edge Python/C++ language interoperability tool
originated by Wim Lavrijsen, LBL. It is the de-facto standard for efficient Python/C++
interoperability in the field of particle physics. As part of OAC-1931408 our group
collaborated with LBL improve packaging and reduce the dependencies allowing
cppyy to move closer to LLVM orbit.

17

