
Compiler Research

04.04.2024

Status And Plans
Vassil Vassilev

Clad — Enabling Differentiable Programming
in Science

Source Transformation AD With Clad

✤ Initial support of memory operations in reverse mode
✤ Added support for clang-18 (discovered regression in clang in #87151)
✤ Re-enabled tests on 32-bit
✤ Simplified pullbacks in reverse mode (produces 10% less code)
✤ Delayed the differentiation process to the end of the translation unit
✤ Reduced excessive stores in the error estimation mode.
✤ Reduced clad::array_ref and clad::array usage in the generated code
✤ Next milestone v1.5 is delayed due to the substantial changes introduced to Clad

and the possibly breaking change in the gradient forward declarations
3

https://github.com/llvm/llvm-project/issues/87151
https://github.com/vgvassilev/clad/milestones
https://github.com/vgvassilev/clad/milestone/5

C++ as a service — rapid software development and
dynamic interoperability with Python and beyond

Hands on details can be seen in our showcase presentation.

https://compiler-research.org/meetings/#caas_20Sep2023

Status. Cling

✤ No updates

5

Status. Clang-Repl

✤ 7 merged contributions last month: link
✤ 8 contributions updated this month: link
✤ Value Handling (RFC)

✤ D146809 — [clang-repl] Implement Value pretty printing for containers

The goal is to provide better stability and robustness which can later cling can
reuse.

6

https://github.com/llvm/llvm-project/pulls?q=is%3Apr+%22clang-repl%22+merged%3A2024-03-08..2024-04-04+
https://github.com/llvm/llvm-project/pulls?q=is%3Apr+%22clang-repl%22+is%3Aopen+updated%3A2024-03-08..2024-04-04+
https://discourse.llvm.org/t/rfc-handle-execution-results-in-clang-repl/68493
https://reviews.llvm.org/D146809

Status. CppInterOp

✤ Improved CMake config that makes find_package more robust
✤ Added tests in the conda package via clad-feedstock
✤ Added arm packaging support
✤ Working on adding advanced template instantiation support

7

Status. Xeus-Cpp

✤ CppInterOp v1.2.0 was integrated in xeus-cpp PR46
✤ Working on merging more infrastructure xeus-clang-repl into xeus-cpp
✤ Released v0.4.0

8

https://github.com/compiler-research/xeus-cpp/pull/46

Status. Xeus-Clang-Repl

✤ No updates

9

Open Projects

✤ Open projects are tracked in our open projects page.

10

https://compiler-research.org/open_projects

Next Meetings

✤ Monthly Meeting — 2nd May, 1700 CET/0800 PDT

If you want to share your knowledge/experience with interactive C++ we can
include presentations at an upcoming next meeting

11

Thank you!

Lingo

✤ CppInterOp is a product of OAC-1931408 and exposes API from Clang and LLVM in a mostly
backward compatibe way. The API support downstream tools that utilize interactive C++ by
using the compiler as a service. That is, embed Clang and LLVM as a libraries in their
codebases. The API are designed to be minimalistic and aid non-trivial tasks such as language
interoperability on the fly. In such scenarios CppInterOp can be used to provide the necessary
introspection information to the other side helping the language cross talk. The package makes
it easy to deploy as it ships Clang as a service without any dependencies.

✤ Xeus-Clang-Repl is a product of OAC-1931408 that is a Jupyter plugin supporting C++
development based on ClangRepl.

✤ Xeus-Cpp is a product of OAC-1931408 in collaboration with the QuantStack company. It is a
Jupyter kernel for C++ based on the native implementation of the Jupyter protocol xeus. It is
supports the Wasm version of Jupyter – JupyterLite. Generalization of Xeus-Clang-Repl.

13

Lingo

✤ Cling The first C++11-compliant interpreter used in the field of High-Energy Physics
for data analysis and interoperability.

✤ ClangRepl is a generalization of Cling in LLVM/Clang upstream and is a product of
OAC- 1931408. It be more reliable, easier to deploy. It follows the best practices
adopted by the LLVM developers community. It supports CUDA, OpenMP and Wasm.

✤ Cppyy is an undervalued, cutting-edge Python/C++ language interoperability tool
originated by Wim Lavrijsen, LBL. It is the de-facto standard for efficient Python/C++
interoperability in the field of particle physics. As part of OAC-1931408 our group
collaborated with LBL improve packaging and reduce the dependencies allowing
cppyy to move closer to LLVM orbit.

14

