
Automatic Interoperability
Between C++ and Python

Baidyanath Kundu, Vassil Vassilev, Wim Lavrijsen

Compiler
Research

Former RSE @
CERN & Princeton

CERN &
Princeton LBL

https://compiler-research.org/
https://compiler-research.org/

Cppyy
Cppyy is an automatic C++ - Python
runtime bindings generator which
supports a wide range of C++ features.

struct MyClass {
 MyClass(int i) : fData(i) {}
 virtual ~MyClass() {}
 virtual int add(int i) {
 return fData + i;
 }
 int fData;
};

C++ code (MyClass.h)

>>> import cppyy
>>> import cppyy.gbl as Cpp
>>> cppyy.include("MyClass.h")
>>> class PyMyClass(Cpp.MyClass):
... def add(self, i):
... return self.fData + 2*i
...
>>> m = Cpp.MyClass(1)
>>> m.add(2)
3
>>> m = PyMyClass(1)
>>> m.add(2)
5

Python Interpreter

2

https://cppyy.readthedocs.io/

Cling/Clang-REPL

3

Cling is an interactive C++ interpreter, built on the top of LLVM and Clang
libraries.

Clang-REPL can be thought of as a generalization of Cling in LLVM.

https://clang.llvm.org/docs/ClangRepl.html

Numba

Numba is a JIT compiler for a
subset of Python code. It works
best with NumPy arrays and loops.

4

from numba import jit
import numpy as np

x = np.arange(100).reshape(10, 10)

@jit(nopython=True)
def go_fast(a):
 trace = 0.0

 for i in range(a.shape[0]):
 trace += np.tanh(a[i, i])

 return a + trace

print(go_fast(x))

https://numba.readthedocs.io/

Disadvantages of using ROOT/meta in Cppyy:
● Performance penalty from its abstraction
● Difficult to extend
● Hard to evolve reflection interfaces

Motivation

cppyy ROOT/meta Cling

Original design

5

Can we make cppyy faster and lighter?

Goal

Our goal was to rebase Cppyy on top of pure LLVM to address the
disadvantages. Thus we created a thin layer on top of the interpreter, called

CppInterOp, to provide easy to use interfaces for reflection information. This
will eventually be a part of upstream LLVM.

6

Our Design

cppyy Clang-REPLCppInterOp

Benefits (Measured)

7

Time taken and memory used during class template instantiation

Cppyy with CppInterOp is about twice as fast in
instantiating templates and this holds true
when we increase the number of template
arguments as well

Cppyy with CppInterOp scales better for nested
template instantiations when compared to
Cppyy with ROOT/meta

Benefits (Unmeasurable)

Simpler codebase LLVM umbrella

8

Better C++ feature set
support

NEW

NEW

Well tested interoperability
layer

What else is there to be optimize?
Pe

rf
or

m
an

ce
 ➜

Language
Barrier

Usual usage with Cppyy

Pe
rf

or
m

an
ce

 ➜

Loop

9

Cause of Language Barrier in Python

10

num = 6.0 num = num ** 3

Python Duck Typing

Removing Barriers Inside the Loop
Pe

rf
or

m
an

ce
 ➜

Loop

11

Pe
rf

or
m

an
ce

 ➜

Numba removes the language barriers in
the loop

Loop

Numba - PyROOT Example
import numba
import math
import ROOT
import ROOT.NumbaExt
⮜ Import the Numba extension
myfile=ROOT.TTree("vec_lv.root")
vector_of_lv=myfile.Get("vec_lv")
⮜ Vector of TLorentzVector

⮜ Pure Python function
def calc_pt(lv):
 return math.sqrt(lv.Px() ** 2 + lv.Py() ** 2)

def calc_pt_vec(vec_lv):
 pt = []
 for i in range(vec_lv.size()):
 pt.append((calc_pt(vec_lv[i]),

 vec_lv[i].Pt()))
 return pt

12

@numba.njit # ⮜ Numba decorator
def numba_calc_pt(lv):
 return math.sqrt(lv.Px()** 2 +lv.Py()**2)

def numba_calc_pt_vec (vec_lv):
 pts = []
 for i in range(vec_lv.size()):

pts.append((numba_calc_pt(vec_lv[i]),

 vec_lv[i].Pt()))
 return pts

Pts = calc_pt_vec(vector_of_lv)
Pts = numba_calc_pt_vec(vector_of_lv)

When the traditional PyROOT pipeline is
compared against the Numba pipeline in the
above example we get a 17x speedup. link
Available in ROOT master so you can try it out.

https://github.com/sudo-panda/PyHEP-2022/blob/main/PyHEP.ipynb

Ongoing Work

1. Maximize the C++ feature set
supported in Numba.

2. Upstream libInterOp into LLVM
master

3. Leverage Python-C++ interop in
Jupyter using cppyy

13

Ioana Ifrim & Alexander Penev

Thank you

14

Personal Goals
of this Workshop

● How do our tools (cppyy, Jupyter
with C++, etc.) fit into the future
of HEP analysis?

● How does HEP community want
analysis to look like?

● Packaging of tools (how big is
too big?)

● Discussions about open source
development.

