Efficient and Accurate Automatic Python Bindings with Cppy & Cling

Authors: Baidyanath Kundu, Vassil Vassilev, Wim Lavrijsen

“The current work is partially supported by National Science Foundation under Grant OAC-1931408. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.”
Introduction

PyHEP 2020 survey: “How often do you use Python relative to C/C++”

Goal: Tight language integration between Python and C++

jpivarski -talks
Cppy is an automatic C++ - Python runtime bindings generator and supports a wide range of C++ features.

C++ code (MyClass.h)

```cpp
struct MyClass {
    MyClass(int i) : fData(i) {}
    virtual ~MyClass() {} 
    virtual int add(int i) {
        return fData + i;
    }
    int fData;
};
```

Python Interpreter

```python
>>> import cppyy
>>> import cppyy.gbl as Cpp
>>> cppyy.include("MyClass.h")
>>> class PyMyClass(Cpp.MyClass):
...     def add(self, i):
...         return self.fData + 2*i
... >>> m = Cpp.MyClass(1)
>>> m.add(2)  # = 1 + 2
3
>>> m = PyMyClass(1)
>>> m.add(2)  # = 1 + 2 * 2
5
```
Python-C++ Bindings Generators

Manual Bindings Generators

- C++ code
- C++ - Python binding code
- Python

Automatic Bindings Generators

- C++
- Python
- cppyy

-Manual

-Manual
Motivation

Can we make cppyy faster and lighter?

Disadvantages of using ROOT/meta in Cppyy:

- Performance penalty from its abstraction
- Difficult to extend
- Hard to evolve reflection interfaces
Our goal is rebase Cppy on top of pure LLVM to address the disadvantages. **Clang-REPL**, a generalization of Cling in LLVM, will provide the necessary reflection information.
Benefits

- **Simpler codebase**: Removal of string parsing logic leads to a simpler codebase.
- **Better performance**: It also leads to better performance.
- **LLVM umbrella**: The libInterOp interfaces will be a part of LLVM toolchain through Clang-REPL.
Benefits

Better C++ feature set support
C++ features such as partial template specialisation is possible because of libInterOp

Huge reduction in lines of code
A lot of dependencies and workarounds are removed thus reducing the lines of code required to run Cppyy

Well tested interoperability layer
The libInterOp interfaces have full unit test coverage
Template Instantiation Example

C++ code (Tmpl.h)

```cpp
template <typename T>
struct Tmpl {
    T m_num;
    T add (T n) {
        return m_num + n;
    }
};
```

Python Interpreter

```python
>>> import cppyy
>>> import cppyy.gbl as Cpp
>>> cppyy.include("Tmpl.h")
>>> tmpl = Tmpl[int]()
>>> tmpl.m_num = 4
>>> print(tmpl.add(5))
9
>>> tmpl = Tmpl[float]()
>>> tmpl.m_num = 3.0
>>> print(tmpl.add(4.0))
7.0
```

Currently, our developmental Cppyy version can run basic examples such as the one here. Features such as standalone functions and basic classes are also supported.
Further Optimization of Python/C++

Problem 1

Language Barrier

Usual usage with Cppyy
Further Optimization of Python/C++

Problem 2

\[
\text{num} = 6.0
\]

\[
\text{num} = \text{num} ** 3
\]
Extending Cppyy using Numba is the solution

Numba removes the language barriers in the loop

Solution 1

Numba removes the language barriers in the loop

Solution 2

Performance

Loop

Performance

Loop

Numba
Cppyy-Numba Extension

Requirements of the Numba compilation step:
- Typing Information
- Conversion to LLVM IR

Do you know the type of `cppyy.gbl.pow`?

Yes, it's a function that returns double and takes two double values as input.

Requests reflection info for `cppyy.gbl.pow`

It is calling C++ `pow` function

```python
@numba.njit
def pow(x, y):
    cppyy.gbl.pow(x, y)
```
Cppy-Numba Extension

Requirements of the Numba compilation step:
- Typing Information
- Conversion to LLVM IR

Do you know how to convert `cppyy.gbl.pow` into LLVM IR?

Yes, here is the IR:

IR removed for brevity

```python
@numba.njit
def pow(x, y):
cppyy.gbl.pow(x, y)
```

Requests for function pointer for `pow` function

`cppyy.numba_ext`

`cppyy`
Numba - PyROOT Example

```python
import numba
import math
import ROOT
import cppyy.numba_ext

# ▲ Import the Numba extension
myfile=ROOT.TTree("vec_lv.root")
vector_of_lv=myfile.Get("vec_lv")

# ▲ Vector of TLorentzVector

# ▼ PyROOT pipeline
def calc_pt(lv):
    return math.sqrt(lv.Px() ** 2 + lv.Py() ** 2)

def calc_pt_vec(vec_lv):
    pt = []
    for i in range(vec_lv.size()):
        pt.append((calc_pt(vec_lv[i]), vec_lv[i].Pt()))
    return pt

Pts = calc_pt_vec(vector_of_lv)
Pts = numba_calc_pt_vec(vector_of_lv)
```

@numba.njit # ▲ Numba decorator
def numba_calc_pt(lv):
 return math.sqrt(lv.Px() ** 2 + lv.Py() ** 2)

def numba_calc_pt_vec(vec_lv):
 pts = []
 for i in range(vec_lv.size()):
 pts.append((numba_calc_pt(vec_lv[i]), vec_lv[i].Pt()))
 return pts

Pts = numba_calc_pt_vec(vector_of_lv)

When the traditional PyROOT pipeline is compared against the Numba pipeline in the above example we get a 17x speedup.
[link](#)
Ongoing Work

1. Maximize the C++ feature set supported in Numba.
2. Upstream libInterOp into LLVM master
3. Leverage Python-C++ interop in Jupyter using Cppyy. [link](#)
Conclusion

Tighter integration between Python and C++ can enable more efficient data analyses and is possible due to:

- Improved interoperability
- Optimizations in Cppy/PyROOT via Numba
- Crosstalk between kernels in Notebook environments

Thank you