
 Interpreting C++ in the Browser

Xeus-Cpp-Lite

Motivation: Why C++ Needs a REPL

Native Case: Xeus-Cpp via Clang-Repl

Enter the Browser: JupyterLite &
WebAssemby

Initial Proof of Concept: Clang-Repl in
the browser

Bringing it All Together: Xeus-Cpp-Lite

Demos & Use Cases

Deploying Your Own Setup

Future work (Near and Far)

Acknowledgments

Agenda

Xeus-Cpp-Lite = Xeus-Cpp + JupyterLite
 Interpreting C++ in the Browser

REPL

REPL

REPL

Motivation:
Why C++
Needs a REPL

Scientific Computing is Exploratory

Scientists and engineers don’t just write software — they explore

They iterate rapidly: write code, run it, visualize, inspect, repeat

Interpreted Languages Dominate This Space

Tools like Python and R excel due to their REPL-driven workflows

C++ is powerful, but it's compile-run-debug loop is friction-heavy

C++ in a REPL = The Best of Both Worlds

Projects like Cling showed that interactive C++ is possible

Bringing C++ into a REPL format opens doors for teaching, rapid
prototyping, and scientific computing

C++ Kernel through cling and Xeus-cling

cling : https://github.com/root-project/cling

Xeus-cling : https://github.com/jupyter-xeus/xeus-cling

Blog : https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-
fe9b54227d92

Around half a million views on the above blog, demonstrating the
importance of using C++ as a REPL

https://github.com/root-project/cling
https://github.com/jupyter-xeus/xeus-cling
https://github.com/jupyter-xeus/xeus-cling
https://github.com/jupyter-xeus/xeus-cling
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92

C++ Kernel through cling and Xeus-cling

Native Case:
Xeus-Cpp via
Clang-Repl

Clang-Repl
Interactive interpreter built into Clang/LLVM.

Provides the C++ “Read-Eval-Print-Loop” infrastructure.

Developed by Vassil Vassilev.

CppInterOp
A thin C++ layer over Clang-Repl.

Simplifies interaction and provides a stable API.

Used by kernels and apps embedding Clang-Repl.

Xeus-Cpp
A native Jupyter kernel that connects CppInterOp to the Jupyter
protocol via Xeus.

Enables executing C++ code cell-by-cell in Jupyter Notebooks.

Xeus Architecture

Native Case:
Xeus-Cpp via
Clang-Repl

Bridging the Gap
Xeus-Cpp fulfills the need for a C++ REPL inside Jupyter.

Based on Clang-Repl, it offers modern, upstream-supported C++
interpretability.

CppInterOp provides clean integration into the kernel.

Why This Matters
Avoids Cling’s maintenance burden (patches to Clang).

Built on mainline LLVM — easy to upgrade and package.

Forms the foundation for future extensions (debugger, browser
support, etc.)

Enter the
Browser:
JupyterLite &
WebAssembly

Jupyter Without a Backend
Traditional Jupyter requires a server per user → heavy infra costs.

JupyterLite runs entirely in the browser using WebAssembly.

Built to support statically hosted notebooks (e.g., GitHub Pages,
Netlify).

Powered by WebAssembly

Kernels are compiled to Wasm and run client-side.

No backend. No Docker. No Kubernetes.

Scales infinitely — the browser becomes the compute engine.

One Kernel Per Tab

Each user session is isolated, with a fresh in-browser kernel instance.

Think of it like a self-contained JupyterLab in your browser.

What is JupyterLite?

Enter the
Browser:
JupyterLite &
WebAssembly

Real-World Deployments
NumPy.org includes a live JupyterLite console.

SymPy Live offers symbolic math in the browser via JupyterLite.

Capytale (France) uses JupyterLite for teaching Python to 500K+
students.

Versatile Kernel Support

Supports Python (via Pyodide & Xeus), R, Lua, Javascript, and more.

Fully integrated with core Jupyter features (widgets, plotting, rich
outputs).

No Compromise on Scientific Use

Libraries like numpy, pandas, matplotlib, sympy, and scipy all work.

A full REPL and IDE experience — with zero cloud infrastructure.

JupyterLite in Action

NumPy.org

SymPy Live

Enter the
Browser:
JupyterLite &
WebAssembly

Why Not Just Use Conda-Forge?
Conda-Forge builds native binaries (Linux, macOS, Windows).

These can’t run in browsers — no WebAssembly support.

It also assumes a traditional filesystem and POSIX APIs.

Enter Emscripten-Forge

A conda package distribution built for WebAssembly.

Uses the emscripten-wasm32 target + rattler-build + mamba.

Packages are compiled to Wasm using the Emscripten toolchain.

What It Provides

Core packages for Python, R, C++, CLI apps, and more.

Makes kernels like xeus-python, xeus-r, and xeus-cpp-lite possible in
JupyterLite.

Created by Thorsten Beier, now maintained by the broader JupyterLite
team.

The Need for
Emscripten-Forge

Initial Proof
of Concept:
Clang-Repl in
the browser

Why Doesn’t JIT Work in the Browser

On native platforms, Clang-Repl uses LLVM’s ORC JIT, which compiles
code at runtime and jumps to that memory to execute — standard Just-
In-Time compilation.

But in the browser, WebAssembly follows a strict sandbox model:
You can’t write or modify executable memory at runtime.
Memory is separated into code and data (Harvard architecture).

This means: even if clang-repl is compiled to WASM, it can’t act as a
REPL — it can’t emit and run new code dynamically using the JIT model.

Therefore, we needed a completely different approach for incremental,
dynamic execution in the browser.

This gap is what Anubhab Ghosh explored during his GSoC project —
leading to the idea of a new backend for WASM. GSoC Project report
link : Anubhab Ghosh Report

https://compiler-research.org/assets/presentations/Anubhab_Ghosh_wasm_clangrepl.pdf

Initial Proof
of Concept:
Clang-Repl in
the browser

A New Web Assembly Backend for Clang-repl

LLVM 17 introduced a WASM-specific IncrementalExecutor that avoids
JIT and fits the WebAssembly model.

This new IncrementalExecutor class handled the wasm-specific execution
model as follows:

Each REPL input is parsed into a Partial Translation Unit (PTU).

PTU is lowered to LLVM IR, which is compiled to a WASM object file.

That object is then linked using wasm-ld into a standalone WASM
binary (incr_module_x.wasm).

This side module is dynamically loaded using emscripten’s dlopen,
extending the state of the main module.

Initial Proof
of Concept:
Clang-Repl in
the browser

A New Web Assembly Backend for Clang-repl

These modules:

Share the same memory as the main wasm module.

Resolve symbols from earlier cells (cross-cell linking).

Mimic dynamic linking (even though WASM doesn’t support shared
libraries traditionally).

This model effectively turned clang-repl into a live REPL for
WebAssembly, enabling dynamic incremental C++ in the browser!

Proof of Concept : https://github.com/anutosh491/clang-repl-wasm

Lacked dedicated testing upstream :(

https://github.com/anutosh491/clang-repl-wasm

Problems using clang-repl in the browser through LLVM 19

Problems using clang-repl in the browser through LLVM 19

List of Pull
Requests :

Implementing the backbone for clang-repl in the browser

PR #86402 — Initial WebAssembly support for clang-repl

PR #113446 — Fix undefined lld::wasm::link symbol

PR #116735 — Improve flags responsible for generating shared wasm binaries

PR #117978 — Fix generation of wasm binaries

PR #118107 — Remove redundant shared flag while running clang-repl in browser

https://github.com/llvm/llvm-project/pull/86402
https://github.com/llvm/llvm-project/pull/113446
https://github.com/llvm/llvm-project/pull/116735
https://github.com/llvm/llvm-project/pull/117978
https://github.com/llvm/llvm-project/pull/118107

Bringing it all Together

Demo & Use Cases
https://compiler-research.org/xeus-cpp-wasm/lab/index.html

Basic C++
Inline Documentation
Rich Display
Advanced Graphics
Symbolic Computation with Symengine
Array based Computing
SIMD Acceleration
Interactive Widgets
Magic commands

%%file
%timeit
%mamba

Loading 3rd party custom libraries

https://compiler-research.org/xeus-cpp-wasm/lab/index.html

Inline Documentation

Rich Display

Advanced Graphics

Symbolic Computation with Symengine

Array based Computing

Array based Computing

SIMD Acceleration

SIMD Acceleration

Interactive Widgets

Interactive Widgets

Magic Commands

Magic Commands

Magic Commands

https://github.com/jupyter-xeus/xeus-cling/issues/500

Loading third-party/custom libs
 1. Create a simple C++ module

Loading third-party/custom libs
2. Compile it to a WebAssembly shared object

Loading third-party/custom libs

Loading third-party/custom libs

Deploying Your Own Setup

https://github.com/jupyterlite/xeus-lite-demo : Template repo for creating a JupyterLite
deployment on GitHub pages that includes the packages specified in a conda environment.

The process is as follows:

Create a new repository from the GitHub template.

Enable the deployment on GitHub pages from a GitHub action, as shown in the
README.

Edit the environment file to include the desired packages.

https://github.com/jupyterlite/xeus-lite-demo

Deploying Your Own Setup

For example, to deploy a C++ kernel with Symengine & Xtensor-blas installed, the
environment.yml file would contain the following:

Future Work (Near & Far)

Near
Explore Off Screen canvas
Last Value Printing
Integration Testing

Far
Multi language Hybrid Kernels
Integration with Juyterlite AI
Integration with Jupyterlite terminal
Debugger support for xeus-cpp-lite
Migrate from Emscripten-forge to Conda-forge

Off Screen Canvas

https://derthorsten.github.io/pyb2d3/lite/lab/index.html?path=ragdoll.ipynb

Last Value Printing

https://derthorsten.github.io/pyb2d3/lite/lab/index.html?path=ragdoll.ipynb

Integration
Testing

Clang-repl + WebAssembly needs a robust Ci pipeline

Currently, LLVM lacks dedicated tests for Clang-Repl targeting
WebAssembly. This makes it difficult to detect regressions or behavior
changes across LLVM versions.

Why this matters: The migration from LLVM 19 to LLVM 20 introduced subtle
breaking changes — especially in wasm-ld's defaults and symbol handling —
which silently affected clang-repl's behavior in the browser.

Without proper integration tests, such changes go undetected until runtime —
sometimes deep into downstream projects like Xeus-Cpp-Lite.

Today, testing is only indirect:

Through CppInterOp's Emscripten test suite, which exercises Clang-Repl
in a browser-like setting.

Through Xeus-Cpp’s kernel-level Emscripten build.

Multi Language Hybrid Kernels

Integration with JupyterLite AI

Repo : https://github.com/jupyterlite/ai
Tharun Anandh added LLM support for native kernels through GSoC 2024

https://github.com/jupyterlite/ai

Integration with JupyterLite Terminal

Repo : https://github.com/jupyterlite/terminal
Fairly experimental and not ready for general use
But should address lot of use cases once ready

https://github.com/jupyterlite/terminal

Debugger Support for Xeus-Cpp-Lite

Native Debugging (In Progress) : As part of GSoC 2025, I'm mentoring Abhinav, who's
working on implementing debugger support for native Xeus-Cpp using LLDB and lldb-dap.

We’ve made solid progress — we can now:
Set breakpoints
Step into and out of functions
Work in progress: variable inspection, stepping over, call stacks, etc.

Debugging in the Browser (Very Early Exploration)

Bringing debugger support to WebAssembly (WASM) is a bigger challenge — especially
in the browser.
Jonas Devlieghere (lead LLDB developer), who’s actively improving LLDB + lldb-dap
for WASM.
https://jonasdevlieghere.com/post/wasm-debugging/

https://jonasdevlieghere.com/post/wasm-debugging/

Migrate from
Emscripten-forge
to Conda-forge
Unifying package ecosystems: Our long-term goal is to
migrate from emscripten-forge to conda-forge,
avoiding the duplication of recipes across both
platforms.

Why it matters:

Easier maintenance

Better integration with the broader scientific
Python ecosystem

Simplifies WASM support for downstream package
authors

Vassil Vassilev LLVM, cling, clang-repl, CppInterOp, Xeus-Cpp

Sylvain Corlay,
Johan Mabille,

Loic Gouarin
Xeus, Xeus-cling, Xeus-Cpp

Anubhab Ghosh Initial proof for clang-repl in the browser

Thorsten Beier Emscripten-forge, Xeus-lite

Jeremy Tuloup Jupyterlite, Jupyterlite/ai, Jupyterlite/terminal

Martin Renou,
Anastasiia Sliusar

Jupyterlite-Xeus, Empack, Mambajs

Matthew Barton,
Tharun Anandh,
Abhinav Kumar

Significant contributions to Xeus-Cpp & CppInterOp

Acknowledgements

