
Support usage of Thrust API
in Clad

Author: Abdelrhman Elrawy
Mentors: Vassil Vassilev, Alexander Penev

About Me

● Academic Background
○ Master in Applied Computing (Machine Learning & Parallel Programming)

■ Wilfrid Laurier University, Waterloo, ON (2024-2026)
○ Bachelor of Science in Computer Science

■ Helwan University, Cairo, Egypt (2020-2024)

● Work Experience:
○ Machine Learning Engineer (Simli AS, Norway)

■ Worked on creating animatable avatars. (June 2023, Feb 2025)

Project Context

Clad: A source-transformation automatic differentiation (AD) library in Clang.
Thrust: NVIDIA's powerful GPU-parallel algorithms and data structures library.
The Challenge:

● This project aims to enhance Clad by adding support for NVIDIA's Thrust library.
● By enabling differentiation of Thrust's GPU-parallel algorithms, Clad users will gain

the ability to automatically generate gradients for CUDA-accelerated code.
● This work will bridge the gap between high-performance GPU computing and AD,

potentially accelerating gradient-based optimization tasks by orders of magnitude.

Project Overview

Goal: To integrate Thrust function support into Clad, allowing automatic
differentiation of GPU-accelerated code.

Approach:
● Extend Clad's source-to-source transformation engine to recognize Thrust

primitives (e.g., transform, reduce).
● Implement custom derivatives for these Thrust operations.
● Validate performance through real-world use cases and benchmarks.

Personal Motivation

Combining Expertise & Passion

● This project aligns with my academic background and professional experience in
Machine Learning and Parallel Programming.

● I am deeply interested in automatic differentiation and its potential to accelerate
scientific computing and machine learning workloads.

Impact & Contribution

● The project has the potential to bridge a critical gap between high-performance GPU
computing and AD, making advanced optimization techniques more accessible and
efficient.

● Contributing to an open-source project like Clad offers an opportunity to make a real
impact on the scientific community.

Project Implementation Overview

Phase 1: Research & Proof-of-Concept

● Clad Differentiation Architecture Analysis: Investigate Clad architecture and existing
CUDA support.

● Thrust API Analysis and Prioritization: Identify and prioritize Thrust functions most
valuable for AD (e.g., transform, reduce, scan).

● Proof-of-Concept: Manually implement and test forward and hand-written derivatives for
key Thrust primitives (e.g., thrust::transform with a square function) in standalone programs.

● Milestones:
○ Manually implement forward computations and hand-written derivatives for:

■ thrust::transform (for element-wise vector scaling or squaring).
■ thrust::reduce (a simple sum).

Project Implementation Overview

Phase 2: Core Implementation

● Thrust Function Recognition in Clad: Extend Clad to recognize and process Thrust function calls
● Basic Thrust Algorithms Support: Implement custom derivative handlers for fundamental

operations like thrust::transform and thrust::reduce (sum).
● Advanced Thrust Algorithm Support: Tackle more complex algorithms such as

thrust::transform_reduce and thrust::inclusive_scan, addressing unique dependency patterns.
● Milestones:

○ Implement custom derivative handlers for foundational Thrust algorithms:
■ thrust::transform , thrust::reduce

○ Implement custom derivative handlers for more complex and composite operations:
■ thrust::transform_reduce (e.g., for dot products or L2 norms)

Project Implementation Overview

Phase 3: Testing & Integration

● Real-world Integration Examples: Develop practical examples like neural network training
and optimization algorithms using Thrust and Clad to demonstrate value and performance
benefits.

● CI/CD Integration: Integrate Thrust support with Clad's continuous integration/continuous
deployment pipeline.

Phase 4: Documentation & Finalization

● Comprehensive Documentation: Create API documentation, mathematical background,
usage examples, and performance guidelines for Thrust support in Clad.

● Final Report and Presentation: Prepare a detailed technical report, presentation materials,
and future work recommendations.

Goals

● Code Contributions: Fully integrated Thrust function support within Clad.
● Real-world Examples: Development of practical examples like neural network

training.
● Performance Benchmarks: Quantitative comparative analysis demonstrating

speedup from GPU-accelerated differentiation.
● Documentation: Comprehensive API reference and user guide with practical code

examples and tutorials.
● Final Report & Presentation: A detailed technical report outlining design

decisions, challenges, and results, along with a presentation of key findings.
● Future Work: Explore support for other parallel computing frameworks like MPI,

building on the experience gained from Thrust integration.

Thanks!

