
Support usage of Thrust API
in Clad

Author: Abdelrhman Elrawy
Mentors: Vassil Vassilev, Alexander Penev

Project Context

Clad: A source-transformation automatic differentiation (AD) library in Clang.

Thrust: NVIDIA's powerful GPU-parallel algorithms and data structures library.

The Challenge:
● This project aims to enhance Clad by adding support for NVIDIA's Thrust library.
● By enabling differentiation of Thrust's GPU-parallel algorithms, Clad users will gain the

ability to automatically generate gradients for CUDA-accelerated code.
● This work will bridge the gap between high-performance GPU computing and AD,

potentially accelerating gradient-based optimization tasks by orders of magnitude.

Project Progress Summary

16 Pull Requests Merged

● Core Algorithms (8 PRs):
1. thrust::reduce - Parallel reductions with multiple binary operators
2. thrust::inner_product - Dot products and inner products
3. thrust::transform - Element-wise transformations
4. thrust::transform_reduce - Fused transform and reduce operations
5. thrust::copy - Memory operations with gradient tracking
6. thrust::adjacent_difference - Compute differences between adjacent elements
7. Reduction overloads - Additional operator support
8. Reverse-forward mode for reduce

Project Progress Summary

● Advanced Operations (4 PRs):
1. Scan operations - Inclusive/exclusive prefix sums (fundamental parallel primitive)
2. thrust::sort_by_key - Sort key-value pairs with gradient preservation
3. thrust::reduce_by_key - Segmented reductions for grouped data
4. Segmented scans - Advanced partitioned prefix sum operations

● Infrastructure (2 PR):
1. thrust::device_vector support
2. Added Generic functor support for transform

● Demonstrations (2 PRs):
1. Multiple Thrust-based demo applications (Linear Regression, Particle simulation)
2. Bag-of-Words Logistic Regression - ML Demo

Core Algorithm Implementations

● Reduction Operations
1. thrust::reduce

○ Parallel sum, max, min, product operations
○ Special handling for mathematical edge cases (zeros in multiplication)
○ Multiple binary operator support

2. thrust::inner_product
○ Dot products with customizable operations
○ 4-argument and 6-argument versions
○ Essential for linear algebra on GPU

Core Algorithm Implementations

● Reduction Operations
1. thrust::reduce

Core Algorithm Implementations

● Transformation Operations
1. thrust::transform

○ Element-wise operations with automatic differentiation
○ Generic functor support for arbitrary user transformations
○ Efficient GPU parallelization

2. thrust::transform_reduce
○ Fused transformation and reduction
○ Critical for ML: dot products, norms, loss functions
○ Minimizes memory traffic between operations

Core Algorithm Implementations

● Transformation Operations
1. thrust::transform

Core Algorithm Implementations

● Transformation Operations
1. thrust::transform_reduce

Advanced Operations

● Scan Operations (Prefix Sums)
1. Inclusive and Exclusive Scans:

○ Fundamental building block for parallel algorithms
○ Applications: cumulative distributions, parallel scheduling, dynamic

programming
○ Efficient parallel backward pass for gradient accumulation

2. Technical Challenge: Output at position i depends on all inputs up to i

Advanced Operations

● Scan Operations (Prefix Sums)

Advanced Operations

● Sorting Primitives
1. thrust::sort_by_key:

○ Sort key-value pairs while maintaining gradient flow
○ Forward pass records index permutation
○ Backward pass applies inverse permutation to gradients

Advanced Operations

● Sorting Primitives
1. thrust::sort_by_key:

Advanced Operations

● Segmented Operations
1. thrust::reduce_by_key:

○ Group-wise reductions (SQL-like GROUP BY on GPU)
○ Critical for batch processing in neural networks

2. Segmented Scans:
○ Prefix sums within each segment
○ Complex gradient routing through irregular partition boundaries

Advanced Operations

● Segmented Operations
1. thrust::exclusive_scan_by_key

Demo: Logistic Regression

Idea: Classification using GPU acceleration.

Features:

● Logistic regression with gradient descent
● Cross-entropy loss function
● GPU Acceleration:

○ All operations on device memory
○ Thrust operations for vectorized math

● Automatic differentiation via Clad

Demo: Logistic Regression

Thrust Functions in Action

Demo: Logistic Regression

Thrust Functions in Action

Challenges & Solutions
1. GPU Memory Errors

○ Problem: Tracing memory access violations within the CUDA/Thrust environment was complex.
○ Solution: Used compute-sanitizer and careful GPU pointer management to resolve memory

errors.

2. Mathematical Edge Cases
○ Problem: Derivatives undefined for certain operations (e.g., multiply by zero)
○ Solution: Implemented logic to count zeros and correctly handle the gradient for single and multiple

zero-value inputs.

3. Correctness Validation
○ Problem: Verifying GPU-accelerated derivatives
○ Solution: Finite difference comparison, Comprehensive unit tests and Integration tests with real demos

Future Goals

● Supporting more Thrust primitives:
○ Finalize support for the remaining Thrust algorithms.
○ Expand the support for the functor handling.

● Testing Use case:
○ Develop more advanced, real-world examples, such as in neural network training.

Thanks!

