Advancing Python-C++ Interoperability

in ROOT and beyond

Aaron Jomy', Vipul Cariappa’ ?
for the ROOT Project

'CERN EP-SFT, “Ramaiah University of Applied Sciences
13th ROOT Users Workshop
18-11-2025

\

cgfw

el

EP-SFT
Software Frameworks and Tools

Introduction: ROOT & Python

ROOT'’s Python interface allows the creation
of bindings between Pythonand C++ina
dynamic and automatic way.

G

An automatic Python-C++ bindings engine
which powers ROOT’s Python interoperability

How?

The standalone Cppyy package can be pip
installed

cppyy.readthedocs.io

EP-SFT

@)

<7

import ROOT

A simple helper function to fill a test tree
fill tree code = “"*

using FourVector = ROOT::Math::XYZTVector;

using FourVectorVec = std::vector<FourVector>
using CylFourVector = ROOT::Math::RhoEtaPhiVector;

void fill tree{const char *filename, const char *treeName) {
const double M = 0.13957; // set pi+ mass
TRandom3 R(1);

auto genTracks = [&] ()4 tutorials/dataframe/

FourVectorVec tracks; df002 dataMOde'.py
const auto nPart = R.Poisson(15); B
tracks.reserve(nPart);
for (int j = 8; j < nPart; ++j) {

const auto px = R.Gaus{@, 18);

const auto py = R.Gaus(9, 10);

const auto pt = sqri{px * px + py * py);

const auto eta = R.Uniform(-3, 3);

const auto phi = R.uniform(®.8, 2 * TMath::Pi());

CylFourVector vcyl(pt, eta, phi);

// set energy

auto E = sqrt{vcyl.R{) * veyl.R() + M * M)

/¢ fill track vector

tracks.emplace back(veyl.X(), veyl.Y(), veyl.Z(), E):

return tracks;
h

ROOT: :RDataFrame d(64);
d.Define("tracks", genTracks).Snapshot(treeName, filename, {"tracks"});

}

[1:|# Prepare an input tree to run on
fileName = "df@82 dataModel py.root”
treeName = "myTree"

ROOT.gInterpreter.Declare(fill _tree code)
‘RDOT.lel_trec(fﬁlcName. treeName)

!r-‘ We read the tree from the file and create a RDataFrame|
d = ROOT.RDataFrame(treeName, fileName)

Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 2

https://cppyy.readthedocs.io/

S

@)

<7

CPPYY

"W ™. -~
l PyObject* 1
. o o o . ekass V(e .gbl.MyClass
Leverages Cling as a runtime interpreter, enabling : e T ?_pyﬁhon_olns_.,:
. . . '_gizeof ', ¥ _smartpte Y, ...
the interactive execution of C++ 1P ,
| i

The standalone Cppyy package (upstream) relies
on ROOQOT for its interpreter and reflection layer

class MyClass {
MyClass (int i) :m _data(i) {}

ROOT uses a customized fork of Cppyy, to support Virteal int m add(int 4
the HEP use case M

f \
I 5 ROOT-meta |
| Cling | 4> | gInterpreter->Declare(..) 1
| TClass: :GetClass (MyClass) |
\]

TClass: :GetListOfMethods (..)

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond

ﬁ Challenges

Compiler level interactions with the Type System (ROOT-meta)

ROOT-meta: an essential layer enabling the powerful ROOT |/O, and other ROOT
components. Uses LLVM and Clang to drive its C++ reflection system.

o The same system is utilized by Cppyy and ROOT’s Python bindings
Leads to certain limitations in template instantiation, overload resolution, enum

support
o Uses more memory than required

©)

Divergence and maintenance costs

o The cross-dependency between ROOT and Cppyy makes it harder to adopt

upstream features that rely on patches to the type system
m Forexample, changes that don't work well with the 1/0
o Complicates the development of new features, both in Python and C++

EP-SFT
A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond

Software Frameworks and Tools

ROOT’s C++ Interpreter and Python: Motivation

A more powerful C++ feature set, made available in Python automatically

Develop a generalized language interoperability solution for HEP, with modular
extensions on top

Improve compiler-level interactions, optimizing resource consumption

Reduce the maintenance cost of the underlying technology behind Cppyy

In collaboration with the Compiler-Research initiative:

CpplInterOp: a Clang-based C++ Interoperability library

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 5

<7

https://compiler-research.org/

f’ CpplnterOp

An effort to make Cppyy more robust, closer to the compiler and more efficient

Led to a significant rework of how we perform type introspection and translate
C++ language concepts into Python

CpplinterOp is a solution that leverages our experience, providing building blocks

for both advanced language interoperability and type introspection

This presentation aims to showcase the latest developments and potential of
CpplnterOp:

1. Enabling cutting edge R&D in the domain of language bindings
2. Providing better encapsulation of C++ reflection information in ROOT
3. Optimizing performance and bringing new features to Cppyy

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 6

@)

<7

0 CpplnterOp

A lightweight layer on top of LLVM that provides
efficient, on-demand reflection and a JIT compiler

- ———

C++ as a service

Easily embeds Clang and LLVM as alibraries in your
framework

Supports downstream tools that utilize interactive
C++ by using the compiler as a service.

Minimal and powerful API, designed to aid non-trivial
tasks, driving seamless language interoperability

P —— ———
— e ———

Designed to work with both the Cling interpreter, and
Clang-REPL, its generalisation in upstream LLVM

Programming Environments

https://qithub.com/compiler-research/CpplnterOp

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 7

@)

<7

https://github.com/compiler-research/CppInterOp

CpplnterOp

Interp->process(R"(
class TOperator{
public:
template<typename T>
bool operator<(T t) { return true; }
}s
)")s
Cpp::TCppScope_t TOperator = Cpp::GetNamed("TOperator");

auto* TOpCtor = Cpp::GetDefaultConstructor(TOperator);
auto FCI_TOpCtor = Cpp::MakeFunctionCallable(TOpCtor);
void* toperator = nullptr;
FCI_TOpCtor.Invoke((void*)&toperator);

EXPECT_TRUE (toperator);

C++ as a service

EP-SFT
Software Frameworks and Tools

Programming Environments

https://qithub.com/compiler-research/CpplnterOp

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 8

https://github.com/compiler-research/CppInterOp

Synergy with other open-source projects

Interest in CpplnterOp from the Julia community ° o
Several contributions by a Clang.jl developer on the C-API J“I Ia

julia> import CppInterOp as Cpp

julia> I = Cpp.create_interpreter()
CppInterOp.Interpreter(Ptr{CppInterOp.CXInterpreterImpl}

E%yA 26

julia> Cpp.declare(I, """#include <ctime>""")
true

CppinterOp.jl

julia> x = Cpp.lookup(I, "clock™)

julia> Cpp.name(x) == "clock"
true

julia> t1 = Cpp.evaluate(I, "clock()"); result = Ref{Clong} RGClpe to bUIId Cpplnterop asa

(C_NULL); Cpp.invoke(x, result);t2 = Cpp.evaluate(I, "clock()") Julia package:
true

Sulias t1 < result[] < t2 https://github.com/JuliaPackaging/Yqqdrasil/
true tree/master/L/libCppinterOp

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 9

@)

<7

https://github.com/JuliaPackaging/Yggdrasil/tree/master/L/libCppInterOp
https://github.com/JuliaPackaging/Yggdrasil/tree/master/L/libCppInterOp

Synergy with other open-source projects

https://jank-lang.org/

(cpp/raw "namespace
jank: :cpp::constructor::complex::pass_aliased

Dialect of Clojure based on LLVM JIT b {
Extends CpplnterOp for C++ e e
Interoperability };

using T = foo;
Allows seamlessly writing C++ and)

(let* [foo
(cpp/jank.cpp.constructor.complex.pass_aliased.T.)]
(if (= 333 (cpp/.-a foo0))
1success))

Clojure in the same file.

N EP-SFT
@) Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 10

<7

https://jank-lang.org/

0 Integration with ROOT

CpplnterOp has been integrated into ROOT
from v6.36

ROOT

Incrementally abstracts parts of the type Libraries
system

- Offloads some reflection Reflection
- Leverages code generation facilities for E S |- e
function wrappers Ype oystem

CodeGen

A

Cling
[CH Interpreter CppinterOp }

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 11

@)

<7

ﬁ Redesigned Cppyy

Cppyy re-engineered to be based on CpplnterOp

Works standalone today!

ROOT cppyy
Passes ~95% of the Cppyy test cases Libraries Python/C++
Interoperability
Currently being integrated in ROOT N
untime Interpreter
Reflection API
Fewer dependencies, more performant Reflection

[Type System]— Reflection®

CodeGen

Adheres to Clang for typing, conversion and

overload resolution rules - less bugs
. [CH(,:E”QJ , H CpplnterOp }
More language features from C++ can be used in nterpreter

Python Eg. templated callbacks, lambdas, and more

N EP-SFT
@ Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 12

<7

Features enabled by the new cppyy

e Templated Callbacks: Users can now pass templated functions as a callback
to higher order functions

data = ROOT.vector[float]([1.0, 2.0, 3.0]) template <typename T1, typename T2>

out = ROOT.map(data, gbl.foo[float, int], 3.0, 0) double foo(double in, T1 a, T2 b) {

print(data) # { 1.00000f, 2.00000f, 3.00000f } return in + a + b; };

print(out) # { 4.00000f, 5.00000f, 6.00000f } template<typename I, typename F, typename... Args>
I map(I iterable, F callable, Args&6... args) {
}

e C++lambdas: Ability to access and use C++ lambdas

assert ROOT.get_add_fn(5)(15) = 20 auto get_add_fn(int x) {

return [x](int y) { return x + vy; };

}

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 13

@)

<7

Features enabled by the new cppyy

e Better support for std::tuple: Tuple indexing and unpacking

t = ROOT.std.make_tuple(1, "2", 5.0)
assert len(t) = 3

a, b, c =t
assert a = 1
assert b = "2"
assert ¢ = 5.0

e Jemplate Instantiation based on Python Type Hints

def callback(x: int, y: float) — float: template <typename R, typename... U,
return x + vy typename ... A>
R callme(R (*f)(U...), A & ...args) {
ROOT.callme(callback, 123, 321.5) # 444.5 return f(args...);
}

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 14

@)

<7

Better Integration with Developer Tools

e Python Type Hints
Auto Completes

e Documentationon
Hover

e For ROOT types
and configurable
for custom user
defined types

-
=

Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond

15

Better Integration with Developer Tools

Parse source code to extract types and doxygen comments.
Generate . pyiinterface files using type info and docs comments.
Interface files packaged with ROOT for ROOT types.

Dynamically generated for user defined types.

import ROOT

ROOT.gInterpreter.Declare(r"""
struct UserDefined { ... };

")

ROOT.generate_interface(ROOT.UserDefined, output="typings/")

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 16

@)

<7

0 Latest Benchmarks

We compare the new Cppyy based on CpplnterOp against Upstream and ROOT 6.38.
e The benchmark measures the call-overhead instantiating a lightweight data frame class
modelled after RDataFrame, defining up to 1000 columns.

df.Define("cl1l", f1).Define("c2", f2)...

Defining up to 1,000 columns Defining up to 1,000 columns
S 905_ | —— ROQT 6.38 : : ; ; oo = = —»— ROQOT 6.38 /__)r’
i = =— Cppyy - Upstream 5 % 5ol |~ CPpyy - Upstream P 3 g |
g 8O T ; /./ i A S g = S — '/’,/
E e /r o : é 3001 : by ,
o - : : : = { ¥
60:_ 4 O //./‘ R i Gy 250— /j'// /
E A o W L T
— B RS ST % 5 3 5 £ I ¥ n £
S0E ; s e 200 : — R r//'/'
= g o R o -~ / : -
= o o G o E /'// - ,jy/‘/AV
E /Ir /‘F/y ; = }/ / e >
20_ j =) 100 = g P r T sant
= __/ly-/*” : : = /r/'/l/ o
10E e SR 50 _—»,//.frft‘o’
- T Sy o p—o 4 —0—4—9 - *,..’
ﬁh(' 'Hll|r?l|.|_|4|-|||-|| e oo T T S L él.l—lllllllllll|l|||llv'|l|\llilllll S T o I O T
100 200 300 400 500 600 700 800 $00 1000 100 200 300 400 500 600 700 800 900 1000
Number of Columns Defined Number of Columns Defined

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 17

@)

<7

Summary

e The development of CpplinterOp, a new lightweight library on top of LLVM, driving
improved reflection and language bindings

e [tsadoption within ROOT, improving maintainability, stability and performance

e Redesigned Cppyy based on CpplnterOp, opening up new features, driving down run
time and memory expenses. Currently being integrated into ROOT

e Synergy with other open-source projects, powering interoperability with other
languages

e Participating in the broader programming language and compiler community

N EP-SFT
@ Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 18

<7

ﬁ Backup: Cling

ROQOT’s interactive C++ Interpreter
Built on the LLVM/Clang compiler framework

Allows for the runtime execution of C++ code

EP-SFT
Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 19

Cppyy upstream is currently based on ROOT
6.32.8 (Dec 2024)

EP-SFT

Backup: Cppyy Upstream

>>> import cppyy
>>> cppyy.cppdef (""" .
. class MyClass { cppyy.readthedocs.io
. public:
MyClass{int i) : m_data(i) {}
virtual ~Myclass() {}
virtual int add_int(int i) { return m_data + i; }
ey int m_data;
s Fpn)
True
>>> from cppyy.gbl import MyClass
>>> m = MyClass(42)
>>> cppyy.cppdef ("""
. void say_hello(MyClass* m) {

std::cout << "Hello, the number is: " << m->m_data << std::endl;
Jrmny
Lo

True
>>> MyClass.say hello = cppyy.gbl.say hello
>>> m.say_hello()
Hello, the number is: 42
55> m.m_data = 123
>>> m.say_hello()
Hello, the number is: 13
>>> class PyMyClass(MyClass):
def add_int(self, i): # python side override (CPython only)
return self.m_data + 2*1
>>> cppyy.cppdef("int callback(MyClass®* m, int 1) { return m->add_int(i); }")
True
>>> cppyy.gbl.callback(m, 2) # calls C++ add 1int
15
>>> cppyy.gbl.callback(PyMyClass(1), 2) # calls Python-side override

5

>35>

Software Frameworks and Tools A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 20

https://cppyy.readthedocs.io/

