
Advancing Python-C++ Interoperability
in ROOT and beyond

Aaron Jomy1, Vipul Cariappa1, 2

for the ROOT Project

1CERN EP-SFT, 2Ramaiah University of Applied Sciences
13th ROOT Users Workshop
18-11-2025

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 2

ROOT’s Python interface allows the creation
of bindings between Python and C++ in a
dynamic and automatic way.

Introduction: ROOT & Python

How?

tutorials/dataframe/
df002_dataModel.py

An automatic Python-C++ bindings engine
which powers ROOT’s Python interoperability

The standalone Cppyy package can be pip
installed

cppyy.readthedocs.io

https://cppyy.readthedocs.io/

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 3

Leverages Cling as a runtime interpreter, enabling
the interactive execution of C++

The standalone Cppyy package (upstream) relies
on ROOT for its interpreter and reflection layer

ROOT uses a customized fork of Cppyy, to support
the HEP use case

Cppyy

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 4

Compiler level interactions with the Type System (ROOT-meta)

○ ROOT-meta: an essential layer enabling the powerful ROOT I/O, and other ROOT
components. Uses LLVM and Clang to drive its C++ reflection system.

○ The same system is utilized by Cppyy and ROOT’s Python bindings
○ Leads to certain limitations in template instantiation, overload resolution, enum

support
○ Uses more memory than required

Challenges

Divergence and maintenance costs

○ The cross-dependency between ROOT and Cppyy makes it harder to adopt
upstream features that rely on patches to the type system

■ For example, changes that don’t work well with the I/O
○ Complicates the development of new features, both in Python and C++

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 5

A more powerful C++ feature set, made available in Python automatically

ROOT’s C++ Interpreter and Python: Motivation

In collaboration with the Compiler-Research initiative:

CppInterOp: a Clang-based C++ Interoperability library

Develop a generalized language interoperability solution for HEP, with modular

extensions on top

Improve compiler-level interactions, optimizing resource consumption

Reduce the maintenance cost of the underlying technology behind Cppyy

https://compiler-research.org/

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 6

This presentation aims to showcase the latest developments and potential of

CppInterOp:

1. Enabling cutting edge R&D in the domain of language bindings

2. Providing better encapsulation of C++ reflection information in ROOT

3. Optimizing performance and bringing new features to Cppyy

CppInterOp is a solution that leverages our experience, providing building blocks
for both advanced language interoperability and type introspection

CppInterOp

An effort to make Cppyy more robust, closer to the compiler and more efficient

Led to a significant rework of how we perform type introspection and translate
C++ language concepts into Python

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 7

A lightweight layer on top of LLVM that provides

efficient, on-demand reflection and a JIT compiler

Easily embeds Clang and LLVM as a libraries in your

framework

Supports downstream tools that utilize interactive

C++ by using the compiler as a service.

Minimal and powerful API, designed to aid non-trivial

tasks, driving seamless language interoperability

Designed to work with both the Cling interpreter, and

Clang-REPL, its generalisation in upstream LLVM
https://github.com/compiler-research/CppInterOp

CppInterOp

https://github.com/compiler-research/CppInterOp

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 8

https://github.com/compiler-research/CppInterOp

CppInterOp

 Interp->process(R"(

 class TOperator{

 public:

 template<typename T>

 bool operator<(T t) { return true; }

 };

)");

 Cpp::TCppScope_t TOperator = Cpp::GetNamed("TOperator");

 auto* TOpCtor = Cpp::GetDefaultConstructor(TOperator);

 auto FCI_TOpCtor = Cpp::MakeFunctionCallable(TOpCtor);

 void* toperator = nullptr;

 FCI_TOpCtor.Invoke((void*)&toperator);

 EXPECT_TRUE(toperator);

https://github.com/compiler-research/CppInterOp

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 9

Interest in CppInterOp from the Julia community

Several contributions by a Clang.jl developer on the C-API

julia> import CppInterOp as Cpp

julia> I = Cpp.create_interpreter()

CppInterOp.Interpreter(Ptr{CppInterOp.CXInterpreterImpl}

julia> Cpp.declare(I, """#include <ctime>""")

true

julia> x = Cpp.lookup(I, "clock")

julia> Cpp.name(x) == "clock"

true

julia> t1 = Cpp.evaluate(I, "clock()"); result = Ref{Clong}

(C_NULL); Cpp.invoke(x, result);t2 = Cpp.evaluate(I, "clock()")

true

julia> t1 < result[] < t2

true

Recipe to build CppInterOp as a
Julia package:

https://github.com/JuliaPackaging/Yggdrasil/
tree/master/L/libCppInterOp

Synergy with other open-source projects

@test I.ptr != C_NULL

x = Cpp.lookup(I, "clock")

@test @test Cpp.name(x) == "clock"

@test Cpp.fullname(x) == "clock"

t1 = Cpp.evaluate(I, "clock()")

result = Ref{Clong}(C_NULL)

Cpp.invoke(x, result)

t = result

t2 = Cpp.evaluate(I, "clock()")

@test

CppInterOp.jl

https://github.com/JuliaPackaging/Yggdrasil/tree/master/L/libCppInterOp
https://github.com/JuliaPackaging/Yggdrasil/tree/master/L/libCppInterOp

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 10

Dialect of Clojure based on LLVM JIT

Extends CppInterOp for C++
Interoperability

Allows seamlessly writing C++ and
Clojure in the same file.

(cpp/raw "namespace

jank::cpp::constructor::complex::pass_aliased

 {

 struct {

 int padding{};

 int a{ 333 };

 };

 using T = foo;

 }")

(let* [foo

(cpp/jank.cpp.constructor.complex.pass_aliased.T.)]

 (if (= 333 (cpp/.-a foo))

 :success))

https://jank-lang.org/

Synergy with other open-source projects

https://jank-lang.org/

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 11

Type System

Reflection

Integration with ROOT

Cling
C++ Interpreter CppInterOp

ROOT

Libraries

Reflection*
CodeGen

CppInterOp has been integrated into ROOT
from v6.36

Incrementally abstracts parts of the type
system

- Offloads some reflection
- Leverages code generation facilities for

function wrappers

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 12

Cppyy re-engineered to be based on CppInterOp

Works standalone today!

Passes ~95% of the Cppyy test cases

Currently being integrated in ROOT

Fewer dependencies, more performant

Adheres to Clang for typing, conversion and
overload resolution rules - less bugs

More language features from C++ can be used in
Python Eg. templated callbacks, lambdas, and more

Cling
C++ Interpreter CppInterOp

Runtime Interpreter
Reflection API

ROOT cppyy

Python/C++
Interoperability

Libraries

Type System Reflection*
CodeGen

Redesigned Cppyy

Reflection

Ongoing Integration

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 13

● Templated Callbacks: Users can now pass templated functions as a callback

to higher order functions

● C++ lambdas: Ability to access and use C++ lambdas

template <typename T1, typename T2>
double foo(double in, T1 a, T2 b) {
 return in + a + b; };
template<typename I, typename F, typename... Args>
I map(I iterable, F callable, Args&&... args) { ...
}

data = ROOT.vector[float]([1.0, 2.0, 3.0])
out = ROOT.map(data, gbl.foo[float, int], 3.0, 0)
print(data) # { 1.00000f, 2.00000f, 3.00000f }
print(out) # { 4.00000f, 5.00000f, 6.00000f }

auto get_add_fn(int x) {
 return [x](int y) { return x + y; };
}

assert ROOT.get_add_fn(5)(15) == 20

Features enabled by the new cppyy

In Development

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 14

● Better support for std::tuple: Tuple indexing and unpacking

● Template Instantiation based on Python Type Hints

t = ROOT.std.make_tuple(1, "2", 5.0)
assert len(t) == 3

a, b, c = t
assert a == 1
assert b == "2"
assert c == 5.0

template <typename R, typename... U,
 typename... A>
R callme(R (*f)(U...), A &&...args) {
 return f(args...);
}

def callback(x: int, y: float) -> float:
 return x + y

ROOT.callme(callback, 123, 321.5) # 444.5

Features enabled by the new cppyy

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 15

● Python Type Hints

● Auto Completes

● Documentation on

Hover

● For ROOT types

and configurable

for custom user

defined types

Better Integration with Developer Tools

In Development

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 16

● Parse source code to extract types and doxygen comments.

● Generate .pyi interface files using type info and docs comments.

● Interface files packaged with ROOT for ROOT types.

● Dynamically generated for user defined types.

import ROOT

ROOT.gInterpreter.Declare(r"""
struct UserDefined { ... };
""")

ROOT.generate_interface(ROOT.UserDefined, output="typings/")

Better Integration with Developer Tools

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 17

● We compare the new Cppyy based on CppInterOp against Upstream and ROOT 6.38.
● The benchmark measures the call-overhead instantiating a lightweight data frame class

modelled after RDataFrame, defining up to 1000 columns.

df.Define("c1", f1).Define("c2", f2)...

Latest Benchmarks

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 18

● The development of CppInterOp, a new lightweight library on top of LLVM, driving
improved reflection and language bindings

● Its adoption within ROOT, improving maintainability, stability and performance

● Redesigned Cppyy based on CppInterOp, opening up new features, driving down run
time and memory expenses. Currently being integrated into ROOT

● Synergy with other open-source projects, powering interoperability with other
languages

● Participating in the broader programming language and compiler community

Summary

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 19

ROOT’s interactive C++ Interpreter

Built on the LLVM/Clang compiler framework

Allows for the runtime execution of C++ code

Backup: Cling

A. Jomy, V. Cariappa | ROOT Users Workshop 2025 | Advancing Python-C++ Interoperability in ROOT and beyond 20

Backup: Cppyy Upstream

cppyy.readthedocs.io

Cppyy upstream is currently based on ROOT

6.32.8 (Dec 2024)

https://cppyy.readthedocs.io/

