Teaching Automatic Differentiation with
Interactive C++ Jupyter Notebooks

Aaron Jomy', Vassil Vassilev?

'CERN, “Princeton University,
28th EuroAD Workshop
10-12-2025

@)

N

PRINCETON
A UNIVERSITY

High-level interactive programming languages

like Python simplify differentiable programming O PyTorch

X

No long edit-compile-run cycles
¥ Te NSOor

)l

Simple language syntax

Easy to teach JuliaDiff

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 2/20

Jupyter Notebooks are great!

import jax.numpy as jnp
from jax import grad, jit, wvmap

from jax import random import torch
key = random.key(@)
4 . t forward
grad = grad(jnp.
pri d tanhi2.6})

print(grad(g

(grad(inp.Tanh)))(2.8))

0.870650816
0.25265485

def sigmoid(x):
return 0.5 * (jnp.tanh(x / 2) + 1)

Quty s probabi y of & label being true
def predict{w, b, inputs):
return sigmoid(jnp.dot(inputs, W) + b)

inputs = jop.array([(¢

151,
39,
0.74, -2 9

targets = inp.array([True, True, False, Truel) Gracs fmm GMorent pATYS a0 AT00S lngemer

def Tass(w, b): ' ° °

preds = predict(W, b, inputs)
label probs = preds * targets + (1 - preds) * (1 - targets)
return -jnp.sum(jnp.log{label probs))

backward |

. x = torch.tensor([@0.5, 0.75], requires_grad=True)
key, W_ke # pifferentiate “loss' with respect to o tio y = torch.log(x[@] # x[1]) # torch.sin(x[1])
Ve [LECiges ol y.backuard ()

b = rando) X.grad
rint(. _grad) tensor([1.3633, 0.1912])

b grad = grad(loss,
print('b grad’, b grad)

'n-:v;u‘ u H(.J(::q!;“i“iuss, (8, 1)){w, b) S .
print(‘u grad’, n_grad) ources:
b grad)

G5 1) https://docs.jax.dev/en/latest/jax-101.html

0.7354605 -1.2598922]

" o rasans 1 2w https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 3/20

https://docs.jax.dev/en/latest/jax-101.html
https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

30 lines in Python;

C++ still (mostly) the language of choice for
performance-oriented scientific software i

Long edit-compile-run cycles

Complex language syntax A

) i CoDiPack
Not interactive

Clao

(9 Enzyme AD

boost

++ LIBRARIES

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 4/20

30 lines in Python;

C++ still (mostly) the language of choice for
performance-oriented scientific software

I " ; |
Complex language syntax

. . . K - {

https://xeus-cpp.readthedocs.io/en/latest/
https://clang.llvm.org/docs/ClangRepl.html

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 5/20

https://xeus-cpp.readthedocs.io/en/latest/
https://clang.llvm.org/docs/ClangRepl.html

Interactive C++?

Clang-Repl Design

L C/C++4
libIncremental »7 l :
Compilation 2 @)@ . Y : P :
(liblncremental) Glaug-Repl Teansfor
G

Cling Interpreter Clang-Repl Xeus-Repl /l /
t — | MC [x86, NVPTX, ...)

!

GrGpu

/
H

libInterOp Design

e e e

Native

Deployment on a host
machine responsible for
executing the code

WebAssembly

Hosted on a server, code executes on the browser.
Low-level assembly-like language with a compact
binary format, near native performance

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 6/20

CpplnterOp

- — —
O
o
B
=
(1]
=
o
o

C++ as a service

A lightweight layer on top of LLVM that provides
efficient, on-demand reflection and a JIT compiler

Easily embeds Clang and LLVM as a libraries in your

framework {,‘ ; \
| Python — ‘ Python Interpreter :
Supports downstream tools that utilize interactive 2 y |
C++ by using the compiler as a service. : LJ _J :
'\ /

Programming Environments

https://qithub.com/compiler-research/CpplnterOp

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 7/20

https://github.com/compiler-research/CppInterOp

Rudimentary WebAssembly version (no included AD libraries)
here: https://compiler-research.ora/CpplnterOp/lab/index.html

Please reach out for a reproducible docker container of the
demo shown today

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 8/20

https://compiler-research.org/CppInterOp/lab/index.html

Future directions

e Integration of Python plugin

based on cppyy é ot o atectin(s vctortlonnd ot g,
e Allows you to hop between the

optimal language for each task A st

. . input sobel cppyy.std.vector|'f t'] (input image
° Scr|pt host and device code on L s Cosyi NI ectarC Thowt Hiotot U
ﬂu r\mﬁ‘c‘r-'tr'lw'\“;‘(sobel, output sobel

the fly - |
e Automatically bound to Python ot ot guion ot flout it s,
runtime

) b h input 7
vvvvv h outpu 9 {
*d_input 9 4 P 1mag
daM (&d_inp imag h * heigh float
ﬂ o
cppyy.gaussian blur{input sobel, output sobel)

A. Jomy, B. Kundu et al, CppinterOp: Advancing Interactive C++ for High Energy Physics,
https.//doi.org/10.1051/epjconf/202533701165

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 9/20

https://doi.org/10.1051/epjconf/202533701165

Thank You!

A. Jomy EuroAD Workshop 2025 | Teaching Automatic Differentiation with Interactive C++ Jupyter Notebooks 10/20

