
Efficient Python Programming

Tutorial and Hands On

Aaron Jomy, CERN
Dr Vassil Vassilev, Princeton/CERN

Prerequisites:
All of the code in the tutorial and exercises can be run by pip installing the relevant
packages

Windows users: (WSL2/Ubuntu) recipe:
Install Ubuntu on WSL from the Microsoft Store

Linux/MacOS users can proceed to pip install the packages in a virtual environment

Further recipe and list of pip packages in the README:

https://github.com/aaronj0/efficient-python-tutorials/

https://apps.microsoft.com/detail/9pdxgncfsczv
https://github.com/aaronj0/efficient-python-tutorials
https://github.com/aaronj0/efficient-python-tutorials/

Recap

Dynamic typing

● Variables get a type only during runtime: Values(PyObjects) assigned to them.

● Hard for the interpreter to optimize the execution.
● Compilers can make extensive analysis and optimization before the execution.

Python has only one data type, PyObject* with a pointer to
its runtime type, which is yet another PyObject*.

Why is python slow?

Dynamic typing

Python has only one data type, PyObject* with a
pointer to its runtime type, which is yet another
PyObject*.

>> f = 0.5

>> f = f ** 2

Python is a dynamically typed language(Duck Typing).
It wraps and later unwraps objects (referred to as
boxing/unboxing)

Why is python slow?

Flexible Data Structures

● Python builtins (lists, dictionaries, etc) -> Flexible
Downsides: Very generic, hence not well suited for extensive numerical computations.

● Data structure implementations efficient when processing diverse data
● Heavy overhead when processing only a single type of data.

Enhances programmer productivity Causes performance problems

Flexible nature of Python

Why is python slow?

Flexible Data Structures

● Python builtins (lists, dictionaries, etc) -> Flexible
Downsides: Very generic, hence not well suited for extensive numerical computations.

● Data structure implementations efficient when processing diverse data
● Heavy overhead when processing only a single type of data.

Enhances programmer productivity Causes performance problems

Flexible nature of Python

Although just-in-time (JIT) compilation allow programs to be optimized at runtime, the inherent, dynamic
nature of the Python programming language remains one of its main performance bottlenecks.

Why is python slow?

Before optimising our code:

- How do we measure performance?

Before optimising our code:

- How do we measure performance?

- Navigating algorithmic complexity

Before optimising our code:

- How do we measure performance?

- Navigating algorithmic complexity

- Tools that help achieve this

Profiling and optimising go hand in hand.

Performance Analysis

Profiling and optimising go hand in hand.

Objectives

● Learn how to benchmark and profile Python code
● Understand how optimization can be algorithmic(software design) or resource

based(CPU/Memory)

Performance Analysis

Profiling and optimising go hand in hand.

Objectives

● Learn how to benchmark and profile Python code
● Understand how optimization can be algorithmic(software design) or resource

based(CPU/Memory)

Often resource usage can be optimised by improving software design

Performance Analysis

def fact(n):
 product = 1
 for i in range(n):
 product = product * (i+1)
 return product

print(fact(5))

A simple example:

def fact2(n):
 if n == 0:
 return 1
 else:
 return n * fact2(n-1)

print(fact2(5))

Performance Analysis - Time

def fact(n):
 product = 1
 for i in range(n):
 product = product * (i+1)
 return product

print(fact(5))

A simple example:

def fact2(n):
 if n == 0:
 return 1
 else:
 return n * fact2(n-1)

print(fact2(5))

timeit: 9 µs ± 405 ns per loop (mean ± std. dev.
of 7 runs, 100000 loops each)

15.7 µs ± 427 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

Better!

Performance Analysis - Time

def fact(n):
 product = 1
 for i in range(n):
 product = product * (i+1)
 return product

print(fact(5))

A simple example:

def fact2(n):
 if n == 0:
 return 1
 else:
 return n * fact2(n-1)

print(fact2(5))

timeit: 9 µs ± 405 ns per loop (mean ± std. dev.
of 7 runs, 100000 loops each)

15.7 µs ± 427 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

Better!

execution time not a good metric of algorithmic complexity

Performance Analysis - Time

def fact(n):
 product = 1
 for i in range(n):
 product = product * (i+1)
 return product

print(fact(5))

A simple example:

def fact2(n):
 if n == 0:
 return 1
 else:
 return n * fact2(n-1)

print(fact2(5))

timeit: 9 µs ± 405 ns per loop (mean ± std. dev.
of 7 runs, 100000 loops each)

15.7 µs ± 427 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

Better!

execution time not a good metric of algorithmic complexity

We need a more objective complexity analysis metric for an algorithm

Performance Analysis - Time

def fact(n):
 product = 1
 for i in range(n):
 product = product * (i+1)
 return product

print(fact(5))

A simple example:

def fact2(n):
 if n == 0:
 return 1
 else:
 return n * fact2(n-1)

print(fact2(5))

timeit: 9 µs ± 405 ns per loop (mean ± std. dev.
of 7 runs, 100000 loops each)

15.7 µs ± 427 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

Better!

execution time not a good metric of algorithmic complexity

We need a more objective complexity analysis metric for an algorithm

line-by-line evaluation?

Performance Analysis - Time

line_profiler

Useful to identify hotspots in code

Performance Analysis - Line-by-line evaluation
def bubble_sort(a):
 n = len(a)
 for i in range(n):

for j in range(n - i - 1):
 if a[j] > a[j + 1]:
 a[j], a[j + 1] = a[j + 1], a[j]
 return a

(Try it yourself : Use
line-profiler on a code
example)

kernprof -h
Tip: Use verbosity (-lv)

Performance Analysis - Line-by-line evaluation
def bubble_sort(a):
 n = len(a)
 for i in range(n):

for j in range(n - i - 1):
 if a[j] > a[j + 1]:
 a[j], a[j + 1] = a[j + 1], a[j]
 return a

line_profiler

Useful to identify hotspots in code

Result:

Performance Analysis - Line-by-line evaluation
def bubble_sort(a):
 n = len(a)
 for i in range(n):

for j in range(n - i - 1):
 if a[j] > a[j + 1]:
 a[j], a[j + 1] = a[j + 1], a[j]
 return a

line_profiler

Useful to identify hotspots in code

How to optimise loop with
highest number of hits?

Performance Analysis - Line-by-line evaluation
def bubble_sort(a):
 n = len(a)
 for i in range(n):

swapped = False
for j in range(n - i - 1):

 if a[j] > a[j + 1]:
 a[j], a[j + 1] = a[j + 1], a[j]
 swapped = True

if not swapped:
 break
 return a

line_profiler

Useful to identify hotspots in code

Let’s end the sort early

Performance Analysis - Big O

Big-O notation -> relationship between the input to the
algorithm and the steps required to execute the
algorithm.

Big-O isn't interested in a particular
instance in which you run an algorithm,
such as fact(50), but rather, in how well it
scales given:

a) Increasing input
b) Type of input

This is a much better evaluation metric
than concrete time for a concrete instance!

Performance Analysis 1

Recap : what is the
space and time
complexity of this
sorting algorithm?

def ex2(arr):

 if len(arr) <= 1:

return arr

 pivot = arr[len(arr) // 2]

 left = [x for x in arr if x < pivot]

 middle = [x for x in arr if x ==

pivot]

 right = [x for x in arr if x > pivot]

 return ex2(left) + middle +

ex2(right)

Performance Analysis 1 - Quick Sort

def ex2(arr):

 if len(arr) <= 1:

return arr

 pivot = arr[len(arr) // 2]

 left = [x for x in arr if x < pivot]

 middle = [x for x in arr if x ==

pivot]

 right = [x for x in arr if x > pivot]

 return ex2(left) + middle +

ex2(right)

from https://github.com/the-akira

Performance Analysis 2
def ex3(arr):

 if len(arr) > 1:

 mid = len(arr) // 2

 left = arr[:mid]

 right = arr[mid:]

 ex3(left)

 ex3(right)

 i = j = k = 0

 while i < len(left) and j <

len(right):

 if left[i] < right[j]:

 arr[k] = left[i]

 i += 1

 else:

 arr[k] = right[j]

 j += 1

 k += 1

 while i < len(left):

 arr[k] = left[i]

 i += 1

 k += 1

 while j < len(right):

 arr[k] = right[j]

 j += 1

 k += 1

Performance Analysis 2 - Merge Sort
def ex3(arr):

 if len(arr) > 1:

 mid = len(arr) // 2

 left = arr[:mid]

 right = arr[mid:]

 ex3(left)

 ex3(right)

 i = j = k = 0

 while i < len(left) and j <

len(right):

 if left[i] < right[j]:

 arr[k] = left[i]

 i += 1

 else:

 arr[k] = right[j]

 j += 1

 k += 1

 while i < len(left):

 arr[k] = left[i]

 i += 1

 k += 1

 while j < len(right):

 arr[k] = right[j]

 j += 1

 k += 1

from https://github.com/the-akira

Is the Algorithm optimal?

Understanding of the maths behind the algorithm helps.

For certain algorithms, many of the bottlenecks will be linear algebra computations. In these cases, using the
right function to solve the right problem is key.

Example:

An eigenvalue problem with a symmetric matrix is easier to solve than with a general matrix.

Moreover, most often, you can avoid inverting a matrix and use a less costly (and more numerically stable)
operation.

However, it can be as simple as moving computation or memory allocation outside a loop, and this happens
very often as well.

Performance Analysis - CPU Usage

sum = 0

for i in range(b.shape[0]):

sum += i

sum = np.sum(b)
vs

Performance Analysis - CPU Usage

sum = 0

for i in range(b.shape[0]):

sum += i

sum = np.sum(b)
vs

Performance Analysis - CPU Usage

Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/resource-optimisation/cpu_vectorise.ipynb

Performance Analysis - Memory

Numpy always iterates through the axis
from the biggest one to the smallest one
(ie. decreasing order) unless explicitly
specified (eg. with the axis parameter)

Performance Analysis - Memory

Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/resource-optimisation/memory_optimisation.ipynb

Beyond Python….

Beyond Python…. In Python

Beyond Python

A robust approach to speedups is by binding to faster compiled extensions
(whether manual or automatic)

Beyond Python

A robust approach to speedups is by binding to faster compiled extensions
(whether manual or automatic)

How do we do that?

A robust approach to speedups is by binding to faster compiled extensions
(whether manual or automatic)

How do we do that?

ctypes

Beyond Python - Bindings

Ctypes

ctypes is a foreign function library for Python

It provides C compatible data types, and allows calling
functions in DLLs or shared libraries

Allows wrapping these libraries in pure Python

Ctypes

ctypes is a foreign function library for Python

It provides C compatible data types, and allows calling
functions in DLLs or shared libraries

Allows wrapping these libraries in pure Python

Let’s take a look at how we
can compile, store and access
these extensions:

Ctypes

What are the “compiled extensions” we are referring to?

Ctypes

What are the “compiled extensions” we are referring to?

.so/.dll files

Dynamically linked libraries

Can be loaded at runtime by the OS

Hands On 2: Shared Objects and Bindings using Ctypes

Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/ctypes/01-bindings%20_and_shared_objects.ipynb

Numba allows pure Python function to be JIT compiled to native machine instructions.

Numba allows pure Python function to be JIT compiled to native machine instructions.

Similar in performance to C, C++ and Fortran.

@jit compilation adds a one-time compilation overhead to the runtime of the function.

Once the function is JIT compiled and cached, subsequent calls will be fast.

The optimized machine code is generated by LLVM

Typing
Numba core has a type inference algorithm which assigns a nb_type for a
variable

Typing
Numba core has a type inference algorithm which assigns a nb_type for a
variable

Lowering
High-level Python operations into low-level LLVM code.
Exploits typing to map to LLVM type

Boxing and unboxing
convert PyObject* ‘s into native values, and vice-versa.

Exercise 3: Accelerating Python with Numba

Notebook

https://github.com/aaronj0/efficient-python-tutorials/tree/main/numba

The GIL

Global Interpreter Lock: a mutex
that protects access to Python
objects

The Unwritten Rules of Python:

1. You do not talk about the GIL

2. You do NOT talk about the GIL

3. Don’t even mention the GIL.
No seriously

The GIL

Global Interpreter Lock: a mutex
that protects access to Python
objects

The GIL

Global Interpreter Lock: a mutex
that protects access to Python
objects

Prevents multiple threads from
executing Python bytecodes at
once.

The GIL

Global Interpreter Lock: a mutex
that protects access to Python
objects

Prevents multiple threads from
executing Python bytecodes at
once.

Why? CPython’s memory
management is not thread-safe.

The GIL

Global Interpreter Lock: a mutex
that protects access to Python
objects

Prevents multiple threads from
executing Python bytecodes at
once.

Why? CPython’s memory
management is not thread-safe.

multithreading cooperative multitasking

The GIL

Global Interpreter Lock: a mutex
that protects access to Python
objects

Prevents multiple threads from
executing Python bytecodes at
once.

Why? CPython’s memory
management is not thread-safe.

The GIL does not prevent the execution of C extensions that do not
need the Python C API and can release the GIL.

multithreading cooperative multitasking

The GIL - Parallel Processing

Release the GIL yourself?

This comes with some risk and is generally not a good idea

static PyObject* fibmodule_fib(PyObject* self, PyObject* args)

{

int n, result;

if (!PyArg_ParseTuple(args, "i", &n)) {

 return NULL;

}

Py_BEGIN_ALLOW_THREADS

result = fib(n);

Py_END_ALLOW_THREADS

return Py_BuildValue("i", result);

}

Side note: Python >3.13 makes releasing the GIL optional

Use GIL-Immune Libraries - NumPy (BLAS, SIMD)

Use Cython + threading

Solution?

A superset of the Python programming language

Python-like syntax and C/C++-like static typing

Optimizing static compiler

Annotates how much of your code is C-like and what parts
have pythonic interactions

Annotates how much of your code is C-like and what parts
have pythonic interactions

Utilises static typing

Supports structs, unions, enums

C-style pointers

Notebook
Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/cython/starting-with-cython.ipynb

Exercise 4: Multithreading with Cython

Exercise 4: Multithreading with Cython

The GIL does not prevent the execution of C extensions that do not
need the Python C API and can release the GIL.

Recall the previous note:

Can we get away with pure C?

Try it yourself:

- Instead of using Cython, can you multithread the fibonacci example in Ex 4 with a
shared library and ctypes?

A Final Solution?

Should you use Numba or Cython? Does it matter?

● Performance is usually very similar and exact results depend on package versions.
● Numba is generally easier to use (just add @jit)
● Cython is more stable and mature, Numba developing faster
● Numba also works for GPUs
● Cython can compile arbitrary Python code and directly call C libraries, Numba has

restrictions(subset of Python, object mode)
● Numba requires LLVM toolchain, Cython only C compiler.

Lightweight header-only library that exposes C++ types in Python and vice versa

Creates Python bindings to existing C++ code

Provides core C++ features in Python:

● Functions with value, reference, or pointer parameters and return types
● Instance methods and static methods
● Overloaded functions
● Callbacks

Provides core C++ features in Python:

● Functions with value, reference, or pointer parameters and return types
● Instance methods and static methods
● Overloaded functions
● Callbacks
● Iterators and ranges
● Single and multiple inheritance
● STL data structures
● Smart pointers with reference counting like std::shared_ptr
● And more…

Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/pybind11/pybind_basic.ipynb

Automatic bindings -

Automatic bindings -

cppyy: Yet another Python – C++ binder?

Yes, but bindings are runtime

Python is all runtime, so runtime is more natural

C++-side runtime-ness is provided by Cling

Allows for the interactive exploration of C++ libraries in Python

Automatic bindings -

Run-time generation enables:

- Detailed specialization for higher performance
- Lazy loading for reduced memory use in large scale projects
- Python-side cross-inheritance and callbacks for working with C++ frameworks
- Run-time template instantiation
- Automatic object downcasting
- Exception mapping

Automatic bindings -

Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/cppyy/cppyy-runtime.ipynb

Automatic bindings -

Wrappers of generated (and JITted) C++ are used to easily cover a range of C++isms,
such as linkage of inline functions, overloaded operator new, default arguments, operator

The how?

Automatic bindings -

Hands on task:

- Write a header file using the Eigen C++ library
(https://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html)

- Interactively explore the C++ VectorXd class to create vectors in Python

- Call templated operations from Python like vector normalisation, vector squared norm

- Generate a plot using matplotlib

https://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html

Understanding of the maths behind the algorithm helps.

For certain algorithms, many of the bottlenecks will be linear algebra computations. In these cases, using the
right function to solve the right problem is key.

Is the Algorithm optimal?

Understanding of the maths behind the algorithm helps.

For certain algorithms, many of the bottlenecks will be linear algebra computations. In these cases, using the
right function to solve the right problem is key.

Example:

Is the Algorithm optimal?

Bonus: Cppyy + Numba(experimental)

Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/cppyy/lj_pot_numba.ipynb

Putting it all together

Notebook

https://github.com/aaronj0/efficient-python-tutorials/blob/main/ctypes/quadratic_example.ipynb

