
Aaron Jomy

Me ntore d by : Dr Vassi l Vass i l ev (CER N/Pr inceton)

 Dr Wim Lav r i j sen (LBNL)

CppInterOp: Advancing Interactive C++ for High Energy Physics

• Cppyy

An automatic C++ - Python runtime bindings generator

which provides the user with the C++ feature set

• Cling

An interactive C++ interpreter, built on LLVM and Clang

Used in Cppyy’s(upstream) backend

• Clang-REPL

A generalization of Cling in LLVM - supports interactive

programming for C++ in a read-evaluate-print-loop (REPL)

style

BRIEF INTRO

https://cppyy.readthedocs.io/en/latest/

• CppInterOp allows Cppyy to use LLVM's Clang-REPL as a

runtime compiler

• This avoids the string parsing logic used with the current Cling

based cppyy-backend

• Opens up more C++ features that can be used by Cppyy users

• Lower dependencies leads to performance improvement

• CppInterOp unit tests verify the API that is used for proxy

creation, lookups, function reflection, etc

Python cppyy

CPyCppyy

Intermediate

clingwrapper

cppyy-backend

CppInterOp
Ex : Cpp::Interpreter

Cpp::GetType
Cpp::GetFunction

Clang-REPL

API exposes

Clang-REPL

functionality

Cppyy::GetScope

Cpp::GetScope

COMPILER RESEARCH FORKS

• CppInterOp allows Cppyy to use LLVM's Clang-REPL as a

runtime compiler

• This avoids the string parsing logic used with the current Cling

based cppyy-backend

• Opens up more C++ features that can be used by Cppyy users

• Lower dependencies leads to performance improvement

• CppInterOp unit tests verify the API that is used for proxy

creation, lookups, function reflection, etc

CPPINTEROP

• CppInterOp enables dynamic C++ interactions

with multiple languages and diverse computing

environments like Jupyter

• Provides other languages/environments with:

• A performant JIT, to incrementally compile C++ code

• A reflection API to drive bindings generation.

CPPINTEROP

Python Python Interpreter

CppInterOp Layer Clang-Repl

Swift, Julia

CLR (C#)
…

C++ as a service

Programming Environments

Simplified
codebase:

Compiler features
are abstracted to
the InterOp layer

interfaces

Easier to extend:
Modular

development of
tests/features

Reduced string
manipulation with

parsed code

ADVANTAGES OF TRANSITIONING TO CLANG-REPL

Cppyy Upstream - clingwrapper With CppInterOp

TFunction * func = nullptr;

ClassInfo_t * cl = nullptr;
if (scope == (cppyy_scope_t) GLOBAL_HANDLE) {

 func = gROOT -> GetGlobalFunctionWithPrototype(name.c_str(), proto.c_str());

 if (func && name.back() == '>') {
if (!template_compare(name, func -> GetName()))

 func = nullptr; // happens if implicit conversion matches the overload
 }

} else {

 TClassRef & cr = type_from_handle(scope);
 if (cr.GetClass()) {

 func = cr -> GetMethodWithPrototype(name.c_str(), proto.c_str());
 if (!func) {

 cl = cr -> GetClassInfo();

TCppIndex_t nbases = GetNumBases(scope);
 for (TCppIndex_t i = 0; i < nbases; ++i) {

 TClassRef & base = type_from_handle(GetScope(GetBaseName(scope, i)));
 if (base.GetClass()) {

 func = base -> GetMethodWithPrototype(name.c_str(), proto.c_str());

 if (func) break;
 }

 }
 }

 }

Cppyy::TCppMethod_t Cppyy::GetMethodTemplate(

TCppScope_t scope, const std::string& name, const std::string& proto)
{

 Cpp::GetMethodTemplate(scope, name);

}

TCppFunction_t GetTemplatedMethod(const std::string& name,
TCppScope_t parent, const std::string& filter)

{

DeclContext *Within = 0;
DeclContext::decl_iterator decl;

if (parent) {
auto *D = (Decl *)parent;

Within = llvm::dyn_cast<DeclContext>(D);

}

auto *ND = Cpp_utils::Lookup::Named(&getSema(), name, Within); if
((intptr_t) ND == (intptr_t) 0)

return nullptr;

if ((intptr_t) ND != (intptr_t) -1)

return (TCppFunction_t)(ND->getCanonicalDecl());
}

ADVANTAGES OF TRANSITIONING TO CLANG-REPL

Cppyy::GetMethodTemplateSimplified codebase Example:

InterOp Unit Tests compiler features tested
on InterOp layer

TEST(CUDATest, CUDAH) {

if (!HasCudaSDK())

return;

Cpp::CreateInterpreter({}, {"--cuda"});

bool success = !Cpp::Declare("#include <cuda.h>");

EXPECT_TRUE(success);

}

TEST(CUDATest, CUDARuntime) {

if (!HasCudaSDK())

return;

EXPECT_TRUE(HasCudaRuntime());

}

EXPECT_EQ(Cpp::GetTypeAsString(Cpp::GetType("struct")),"NULL TYPE");

EXPECT_EQ(Cpp::GetTypeAsString(Cpp::GetType("char")), " char");

TEST(TypeReflectionTest, GetSizeOfType) {

std::vector<Decl *> Decls;

std::string code = R"(

struct S {

int a;

double b;

};

char ch;

int n;

S s;

)";

GetAllTopLevelDecls(code, Decls);

EXPECT_EQ(Cpp::GetSizeOfType(Cpp::GetVariableType(Decls[1])), 1);

EXPECT_EQ(Cpp::GetSizeOfType(Cpp::GetVariableType(Decls[2])), 4);

EXPECT_EQ(Cpp::GetSizeOfType(Cpp::GetVariableType(Decls[3])), 16);

ADVANTAGES OF TRANSITIONING TO CLANG-REPL

An overload is assumed to be “correct” when the type

translation for a set of template parameters

(types in the angular brackets instantiating the type) and

function parameters (standard function arguments)

can find a Clang declaration on its syntax tree generated

by the compiler.

A visualisation of the Abstract Syntax Tree (AST) generated by Clang

TEMPLATE SUPPORT WITH CLANG-REPL

Design for a higher level interface (in

cppyy-backend/clingwrapper) that is called

by the aforementioned overload selection

logic in CPyCppyy.

Once the type translation and name is

obtained, we call GetMethodTemplate:

TEMPLATE SUPPORT WITH CLANG-REPL

• We use an InterOp level
interface that exposes and
works with the Clang API to
return the memory address
(Cppyy::TCppMethod_t is a
typedef’d void pointer) of
the best suited templated
function.

• This selection logic
algorithm is specifically
designed to consider the
rules of overload resolution
and explicit instantiations

TEMPLATE SUPPORT WITH CLANG-REPL

Here, the interface
InstantiateTemplate is designed to
provide on demand instantion

of a template declaration
(TemplateDecl*):

TEMPLATE SUPPORT WITH CLANG-REPL

This also involved bumping up all

the Clang API in CppInterOp to

handle template functions to work

with the Cppyy engine

TEMPLATE SUPPORT WITH CLANG-REPL

RESULTS AND FUTURE WORK

Added features:

- Near 100% feature support for:

• Python-C++ CrossInheritance(+10 tests)

• Overload selection tests(8/10)

• Pythonify tests (19/22)

• Concurrency(4/7)

• Conversion tests (3/4)

RESULTS AND FUTURE WORK

100% passing tests for:

- API

- Memory leak checks

RESULTS AND FUTURE WORK

Specific features enabled:

• std::basic_string support in Converters

• Class loading

• Template bindings

• R-Value templates

• Std::pair initialization

• Vector of Pair

• Builtin casts

RESULTS AND FUTURE WORK

Interpreter – Forward declaring input to register in JIT

Added API’s for support cppyy support with Clang-REPL

Support for basic templated functions and methods

Enabling libboost and eigen functionality

TEST Total

Count

Previously passing New pass

count

Increase

CROSSINHERITANCE 38 11 28 +17

DATATYPES 49 18 27 +9

DOCFEATURES 61 29 40 +11

EIGEN 5 0 1 +1

FRAGILE 30 16 17 +1

TOTAL STATS

TEST Total

Count

Previously

passing

New pass

count

Increase

API 5 2 5 +3

LEAKCHECK 6 1 6 +5

LOWLEVEL 21 8 12 +4

TOTAL STATS

FAIL 54 0

PASS 188 276

XFAIL 262 227

TOTAL STATS

THE CI

CppInterOp’s CI is intended to ensure extensive testing and

development across several settings. A caching phase is used to

guarantee that the essential build artifacts are readily available,

minimizing the time required for subsequent builds.

The CI matrix includes a variety of operating systems (Ubuntu,

Windows, macOS), compilers (GCC, MSVC, Clang), and

configurations (various Clang runtime versions, with and

without Cling and Cppyy).

THE CI

The CI infrastructure of CppInterOp was significantly

improved to catch regressions, over multiple repositories

(3x cppyy packages, InterOp)

THE CI

Specific improvements in platform specific

support, variations in libc++ vs libstdc++

with Mac, and architecture specific bugs

with x86 vs ARM on OS X

OTHER OUTCOMES

Accepted abstract at CHEP 2024:
 CppInterOp: Advancing Interactive C++ for High Energy Physics

Mentoring 2 projects on Google Summer of Code 2024:

 - Improved Numpy-STL integration in Cppyy

 - LLM in Xeus-Cpp

Open Source community development:

 - Reviewing PR’s from external contributers

Talk on High performance python at the Fast and Efficient Python Computing

school in Aachen, Germany

WHAT NEXT?

- Working on PyROOT with the ROOT team.

- Reduction of technical debt with Cppyy/PyROOT

divergence (8 patches away from syncing with

upstream)

- Fixing bugs and issues reported by

experiments/users on PyROOT

- Improvement of pythonic interfaces in ROOT

Adoption of CppInterOp in ROOT to provide an

improved interpreter infrastructure

WHAT NEXT?

- Adoption of CppInterOp in ROOT to provide an improved interpreter infrastructure

Thank You!

Aaron Jomy

	Slide 1
	Slide 2
	Slide 3: Compiler research forks
	Slide 4: Cppinterop
	Slide 5: Cppinterop
	Slide 6
	Slide 7
	Slide 8
	Slide 9: TEMPLATE SUPPORT WITH CLANG-REPL
	Slide 10: TEMPLATE SUPPORT WITH CLANG-REPL
	Slide 11: TEMPLATE SUPPORT WITH CLANG-REPL
	Slide 12: TEMPLATE SUPPORT WITH CLANG-REPL
	Slide 13: TEMPLATE SUPPORT WITH CLANG-REPL
	Slide 14: RESULTS AND FUTure work
	Slide 15: RESULTS AND FUTure work
	Slide 16: RESULTS AND FUTure work
	Slide 17: RESULTS AND FUTure work
	Slide 18
	Slide 19
	Slide 20
	Slide 21: THE CI
	Slide 22: THE CI
	Slide 23: THE CI
	Slide 24: OTHER OUTCOMES
	Slide 25: WHAT NEXT?
	Slide 26: WHAT NEXT?
	Slide 27

