
Calling C++ libraries from a D-written DSL:
A cling/cppyy-based approach

Compiler as a Service project @ Princeton University

Alexandru Militaru
alexandru.cmilitaru@gmail.com

4 February, 2021

Symmetry Integration Language (SIL)

Ø D-based domain specific language of functional flavour

Ø designed from the ground up to be easily interoperable with other
languages and systems

sil-cling

Ø SIL plugin that allows transparent calling of C++
libraries

sil-cling

cppyy-backend

Cling

SIL

D’s reflection mechanism

ROOT project (CERN)
written in C++

sil-cling: Architecture

C API

written in D

sil-cling: Interface with cppyy

Ø binds with cppyy
through the direct
inclusion of the
latter’s C header
using dpp

Using Cling to interact with…Cling (I)

Using Cling to interact with…Cling (II)

sil-cling: Interface with SIL

Ø exposes wrappers of C++ entities to SIL through D’s reflection
mechanism

Ø two core types:

Ø CPPNamespace

Ø ClingObj

Ø both CPPNamespace and ClingObj classes have a data member that

holds a reference to their associated Scope object

sil-cling: Calling Interface

Ø object construction, method calling, and function calling – all are
done through the same interface

Ø the procedure is divided into three separate phases:
1. Overload resolution
2. Argument conversion
3. Calling

sil-cling: Overload Resolution

Ø for a given object or namespace, fetch all the method/function
overloads with the given name

Ø it’s a match:
Ø a method overload with the right number of arguments
Ø each SIL Variable provided must have a valid type conversion to its

corresponding parameter

Ø two iterations:
Ø first, we allow only ‘exact’ conversions (e.g. long Variable à C++ long)
Ø then we include ‘lossy’ conversions too (e.g. long Variable à C++ int)

sil-cling: Argument Conversion

Ø depends on whether the SIL Variables provided as arguments hold a
a SIL primitive type or a ClingObj

Ø ClingObj -> string comparisons between the type of the C++ object
that it wraps and the type of the overload’s parameter

Ø SIL primitive type -> must match one of the predefined TypeCoercion
rules

sil-cling: Calling

Ø examine the return type of
the selected overload and
figure out to what SIL type
should it be converted

Ø distinguish between C++
primitive types, types that
should be wrapped as
ClingObjs, and types not
supported yet

sil-cling: Data Members

Ø involves an offset
calculation

sil-cling: What’s next?

Ø automatic instantiation
of templates

Ø direct conversions
to/from SIL arrays and
std::vector

sil-cling: Summary

Ø a SIL plugin that allows transparent calling of C++ libraries

Ø built using cling and cppyy

Ø works with Boost.Asio, dlib, Xapian, etc.

