
Interactive Programming Documentation
for Data Science

Organisation: Compiler Research Organisation – GSoD’23 Page

Description: We are a group of programming languages enthusiasts located at Princeton
University and CERN. Our primary goal is research into foundational software tools helping
scientists to program for speed, interoperability, interactivity, flexibility, and reproducibility.

Our current research focus is primarily in interpretative C/C++/CUDA, automatic
differentiation tools, and C++ language interoperability with Python and beyond.

Authors: @QuillPusher, David Lange

Problem Statement
This Google Season of Docs project aimed to advance the documentation in the area of
interactive analysis, both in the context of C++ and support for C++/Python interoperability.
Our intent was to build the sort of documentation that enables user engagement while being
easy to update as our codes continue to evolve and improve.

Our background is in enabling particle physics researchers to do cutting-edge data analysis.
To make this happen, researchers have developed several unique software technologies in
the area of data analysis. We developed an interactive, interpretative C++ interpreter (aka
REPL) as part of the ROOT data analysis project, including “Cling”, which is a REPL based
on LLVM. Cling is a core component of ROOT and has been in production since 2014. Cling
is also a standalone tool, which has a growing community outside our field. It is recognized
for enabling interactivity, dynamic interoperability and rapid prototyping capabilities for C++
developers. For example, if you are typing C++ in a Jupyter notebook you are using the
xeus-cling Jupyter kernel.

We are in the midst of an important project to address one of the major challenges to ensure
Cling’s sustainability and to foster that growing community: moving most parts of Cling into
LLVM. Since LLVM version 13 we have released a version of Cling called Clang-Repl within
LLVM itself. We subsequently focused on the language interoperability capabilities of Cling.
One user-facing application of our libInterOp, together with Clang-Repl, is Xeus-Clang-Repl,
which is a replacement for xeus-cling using these new codes. As we advance the
implementation and generalise its usage we aim for improving the overall documentation
experience in the area of interactive programming in various environments.

mailto:davidlange6@gmail.com
https://compiler-research.org/season_of_docs_2023.html
https://github.com/QuillPusher
https://rawgit.com/root-project/cling/master/www/index.html
https://xeus-cling.readthedocs.io/en/latest/


Proposal Abstract
The project proposed was to audit and extend the existing documentation for the Clang-Repl
(interactive C++), Xeus-Clang-Repl (notebook-based C++ and Python platform) and
libInterOp (bridging automatically C++ and Python). We aim to identify gaps in the
information or presentation from the point-of-view of new, science-oriented users.

The anticipated scope of the work was:
● Improve user and developer documentation about xeus-clang-repl
● Write several tutorials demonstrating the current capabilities of clang-repl.
● Prepare a blog post (or posts) about clang-repl and xeus-clang-repl.
● Improve user and developer documentation about CppInterOp library API and usage.
● Develop a set of blog posts on how to use the CppInterOp library API and usage.
● Develop a set of blog posts on how to use the CppInterOp library together with

higher-level tool kits such as Cppyy.

We aimed to advance the documentation in the area of interactive analysis, both in the
context of C++ and support for C++/Python interoperability. Our intent was to build the sort
of documentation that enabled user engagement while being easy to update as our codes
continue to evolve and improve.

We also wanted to capture the Student Success Stories, including milestones achieved by
student developers under the banner of Compiler Research Org’s guidance and mentorship
programs.

https://github.com/wlav/cppyy
https://compiler-research.org/stories/


Project Description

Creating the proposal
Our organisation had internal discussion areas of recent development and how each would
benefit from a technical writer of the sort we were likely to find through Google Season of
Docs. We had the benefit of working with a successful GSoD writer previously and so had
some ways upon which to differentiate appropriate ideas. From there the idea was socialised
within our team during project meetings and revised given ideas brought forward.

Budget
The budget and corresponding work scope was estimated based on prior experience and
availability schedules of each mentor (e.g., the reinterpretation work was constrained due to
mentor unavailability once the fall semester started). The largest uncertainty was due to the
regional variation in salary expectations of technical writers based on their location, which
was uncertain at the time of the proposal. Nevertheless, the overall budget appeared to be
appropriate given the time period and project scope that we envisioned.

Our budget turned out to be on target. Our expectations for technical writer productivity and
costs roughly matched what we had planned for in our proposal. No additional funds outside
of Season of Docs were used to fund the technical writers, however the project did build
upon work of a previous GSoD writer and a Google Summer of Code student that
contributed significant documentation infrastructure as part of their project.

Participants
We had numerous technical writers contact us after our project was approved to be part of
the 2023 GSoD program. We organised a small application process including open-ended
questions like “how would you recommend improving this doc page” and received nearly 40
expressions of interest. From those, we interviewed six to make final decisions. One stood
out, QuillPusher, who we extended an offer to. We were very happy that he accepted (having
multiple organisers interested) and started working with us right away. QuillPusher’s role was
to work with our team to improve, or in some cases to develop from scratch, doc pages, blog
posts, and small blobs highlighting accomplishments of our younger team members.

We found regular communication to be (as always) important. We set up weekly meetings
and used Slack for regular communications. Furthermore, we believe that this led to an
efficient process for information exchange and for addressing questions (even if answers
were not always available).



Timeline
Our estimated end date was October 31st, 2023. While we have covered all the major
documentation tasks originally planned for this project, we also drifted a bit from the original
plan, based on documentation audit and available resources.

For example, one of the original tasks included Xeus-Clang-Repl documentation, but we also
wanted to make sure to avoid duplication. Since this topic was covered by a different student
under GSoC 2023, we opted to work on other time-sensitive tasks, for example, profiling our
top student contributors that were soon leaving their respective programs, and capturing
their knowledge for their successors in the form of developer documentation.

A few of the PRs are in review and haven’t been closed as of October 31st, but QuillPusher
has agreed to stay on and resolve these before the program is finally concluded.

Results
As part of our Google Season of Docs 2023 project, one of the main goals for us was to
highlight the amazing work done by our various contributors in the domain of Data Science,
and for these features to be understood by a wider audience through detailed technical
documentation.

We had the opportunity to develop and improve user and developer facing documentation of
various projects that the Compiler Research Organization has contributed to in the recent
past. The rest of this section describes each of the results of our Season of Docs work.

The development of the Clang-REPL component of LLVM. Clang-Repl is an interactive
C++ interpreter that allows for incremental compilation. The Execution Results Handling
features in Clang-REPL that were developed for the upstream LLVM repository have been
documented here (D156858).

The development and application of the Clad tool. Clad enables automatic differentiation
(AD) for C++. It is based on LLVM compiler infrastructure and is a plugin for Clang compiler.
Clad is a source code transformation and automatic differentiation tool: given C++ source
code of a mathematical function, it can automatically generate C++ code for the derivative(s)
of the function. Specifically this project created documentation on:

● RooFit enhancements based on Clad that were developed for the upstream ROOT
repository. We worked with RooFit/ROOT developers to review technical information
and were able to contribute to the documentation against the features contributed by
our team. The main document can be found here (PR1, PR2).

● The CHEF-FP tool for estimating floating-point errors. CHEF-FP is a flexible,
scalable, and easy-to-use source-code transformation tool based on Automatic
Differentiation (AD) for analysing approximation errors in HPC applications. The main
document can be found here (PR).

https://github.com/llvm/llvm-project
https://clang.llvm.org/docs/ClangRepl.html
https://reviews.llvm.org/D156858
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation
http://clang.llvm.org/
https://github.com/vgvassilev/clad
https://github.com/root-project/root/
https://root.cern/doc/v630/group__roofit__dev__docs__ad.html
https://github.com/root-project/root/pull/13929
https://github.com/root-project/root/pull/14018
https://clad.readthedocs.io/en/latest/user/FloatingPointErrorEstimation.html
https://github.com/vgvassilev/clad/pull/648


C++ and Python Interoperability: CppInterOp is a library developed to simplify and debloat
the interoperability features between C++ and Python (PR1, PR2). It also helps in reducing
dependencies for faster and more efficient interoperability in cppyy (PR).

An important link in this chain is Numba, the just-in-time compiler for Python that works
best on code that uses NumPy arrays and functions, and loops. Our developers had
a recent contribution to cppyy that enables Numba (when used with cppyy) to digest and
JIT compile C++ code. These efforts were also documented to increase community
awareness (PR).

Success Stories: One of our greatest joys is working with future scientists and innovators
during their foundational years. We started a series of Success Stories to highlight student
developers that were able to add significant contributions to the world of Open Source
software. These are documented here (PR).

Following is an illustration of the major documentation efforts:

These were concluded based on expected timeline, except for some final reviews and
unmerged PRs (listed below).

Notable PRs

- CppInterOp ReadMe: https://github.com/compiler-research/CppInterOp/pull/91
- CppInterOp Doxygen: https://github.com/compiler-research/CppInterOp/pull/85
- Success Stories: https://github.com/compiler-research/compiler-research.github.io/pull/110
- Execution Results Handling: https://reviews.llvm.org/D156858
and https://github.com/llvm/llvm-project/pull/65650
- Roofit: https://github.com/root-project/root/pull/13929

and https://github.com/root-project/root/pull/14018
- Floating Point Error Estimation: https://github.com/vgvassilev/clad/pull/648
- Numba: https://github.com/wlav/cppyy/pull/199
- CPPYY: https://github.com/compiler-research/CppInterOp/pull/160
- CR Website Setup:
https://github.com/compiler-research/compiler-research.github.io/pull/129

https://github.com/compiler-research/CppInterOp/pull/85
https://github.com/compiler-research/CppInterOp/pull/91
https://github.com/wlav/cppyy
https://github.com/compiler-research/CppInterOp/pull/160
https://github.com/numba/numba
https://github.com/wlav/cppyy/pull/199
https://compiler-research.org/stories/
https://github.com/compiler-research/compiler-research.github.io/pull/110
https://github.com/compiler-research/CppInterOp/pull/91
https://github.com/compiler-research/CppInterOp/pull/85
https://github.com/compiler-research/compiler-research.github.io/pull/110
https://github.com/llvm/llvm-project/pull/65650
https://github.com/llvm/llvm-project/pull/65650
https://github.com/root-project/root/pull/13929
https://github.com/root-project/root/pull/14018
https://github.com/vgvassilev/clad/pull/648
https://github.com/wlav/cppyy/pull/199
https://github.com/compiler-research/CppInterOp/pull/160
https://github.com/compiler-research/compiler-research.github.io/pull/129
https://github.com/compiler-research/compiler-research.github.io/pull/129


Metrics
The primary metrics used were around the number of distinct contributions made and
towards “user” satisfaction and “developer” community acceptance. While it is too early to
really judge the user metric, the other two have been met and exceeded. QuillPusher
contributed content into more communities than we anticipated and had good success in
getting this content accepted and integrated. In that sense, these two metrics correlate well
with the desired outcomes we had. The user satisfaction metric will wait for follow-up
surveys as it takes time to gather feedback.

Analysis
We would consider the project successful, on account of the major documentation
contributions in upstream LLVM, ROOT, and other repositories, where our developers had
previously contributed code.

Going into this project, we had a vision of what we wanted to achieve, but over several
brainstorming sessions, we identified several areas that we thought needed improvement.

Due to the limited time frame that we were working with, we prioritised the tasks based on
what was urgent and what was important. There’s still a wish list of items that we discovered
during these discussions, these are, however, out of the scope of this GSoD project, so we’ll
tackle them over time.

Summary
Our overall experience with this round of Season of Docs has been very positive. We
comment on some specifics of our experience. Different from our previous experience, we
were well-prepared for the recruitment process. Despite many more applications than
previous (2-3x more!), the fact that we had prepared a process meant that we were ready
and organised for these applications. Talking to all the leading candidates was lots of fun,
and in reality we had three or four candidates that would have been excellent for our project.

The content development process itself was also a positive experience. Because our
software lands in quite a number of different repositories, QuillPusher contributed
documentation to numerous open source projects, matching and exceeding our expectations
for the project. He was able to integrate into the “style” of existing documentation systems
and improve our own sites. As things are wrapping up, it is clear that the end results are
going to be extremely valuable to our project and partner websites. Results are (we believe)
sustainably integrated with the codebases. Our project leaders found frequent
communication, including informal means such as chat, important for their project
components.


