
GSoC 2023 Project Report

Implement vector mode in forward mode automatic

differentiation in Clad

Student: Vaibhav Thakkar

Github: @vaithak

Organisation: CERN-HSF

Mentors: Vassil Vassilev, Parth Arora

Project repository: Clad

Project proposal: Proposal link

Overview of the Project

Aim of the Project

Clad is an open source plugin to the Clang compiler that detects calls to

differentiate a defined function from the parsed Abstract Syntax Tree(AST), generates

code that is the derivative the function and modifies the AST to insert the generated

code.

Clad works using the concept of Automatic Differentiation(AD), which in mathematics

and computer algebra is a set of techniques to numerically evaluate the derivative of

a function specified by a computer program.

Vector mode support will facilitate the computation of gradients using the forward

mode AD in a single pass and thus without explicitly performing differentiation n

times for n function arguments. The major benefit of using vector mode is that

computationally expensive operations do not need to be recomputed n times for n

function arguments.

Project Deliverables

This project proposes to add the following features to Clad:

1. Extend and generalize the ForwardModeVisitor to produce a single function with

the directional derivatives.

2. Add a new mode to the top-level clad interface clad::differentiate for vector

mode.

3. Document the above features and write unit tests for them.

Contributions

https://github.com/vaithak
https://hepsoftwarefoundation.org/
https://github.com/vgvassilev
https://github.com/parth-07
https://github.com/vgvassilev/clad
https://compiler-research.org/assets/docs/Vaibhav_Thakkar_Proposal_2023.pdf

The major PRs I contributed in the GSoC period are mentioned here. All of them have

been merged.

PR Description

#565 Add initial basic support for vectorized forward mode AD

#572 Split ForwardMode into separate classes

#576 Ensure git-clang-format is run on PR

#577 Enhance vector fwd mode to differentiate w.r.t selected params

#579 Run clang tidy check on PR

#583 Improve AD function interfaces with bitmasked options

#607 Fix LLVM assertion errors for vector mode

#609 Add matrix class in clad

#614 Add support for array arguments in vector mode

To see all the PRs contributed to Clad by me, checkout this link

Results

Here is an example that demonstrates how one can request clad to use vector mode to

differentiate a function in forward mode.

#include "clad/Differentiator/Differentiator.h"

double prod(double x, double y) { return x * y; }

int main(){

 auto df = clad::differentiate<clad::opts::vector_mode>(prod);

 double x = 3, y = 4;

 double dx = 0, dy = 0;

 df.execute(x, y, &dx, &dy);

 printf("d_x = %.2f, d_y = %.2f\n", dx, dy); // Results in: d_x = 4.00, d_y = 3.00

}

Thus, the calling convention is to use clad::differentiate<clad::opts::vector_mode>

(...) instead of the usual calling convention, clad::differentiate(...) .

To read more about vector forward mode in clad, please visit here

Link to my blogpost explaining vectorized forward mode AD

Future Work

Support for Vector Forward Mode AD is still not complete, some essential features to

be added:

Differentiation of functions containing call expressions - this can be either

std functions like pow or exp , or calling user-defined functions.

Support for object oriented features in vector mode; this is to essentially

allow differentiating method calls or functors.

https://github.com/vgvassilev/clad/pull/565
https://github.com/vgvassilev/clad/pull/572
https://github.com/vgvassilev/clad/pull/576
https://github.com/vgvassilev/clad/pull/577
https://github.com/vgvassilev/clad/pull/579
https://github.com/vgvassilev/clad/pull/583
https://github.com/vgvassilev/clad/pull/607
https://github.com/vgvassilev/clad/pull/609
https://github.com/vgvassilev/clad/pull/614
https://github.com/vgvassilev/clad/pulls?q=is%3Apr+author%3Avaithak
https://clad.readthedocs.io/en/latest/user/UsingVectorMode.html
https://vaithak.github.io/vectorized-autodiff-clad/

Improving efficiency to match that of vectorized AD implementations in other

libraries, for ex: enzyme.

Some experiements on auto-vectorization

As suggested in LLVM's documentation on auto-vectorization, ran some diagnostic tests

with -Rpass=loop-vectorize flag to ensure that clad::array and clad::matrix

operations are vectorized by the compiler.

The code programs used for this were the same as those present in clad/demos and

clad/tests for vector forward mode.

https://llvm.org/docs/Vectorizers.html

