
Google Summer of Code 2024 Proposal

The LLVM Compiler Infrastructure

Support clang plugins on Windows
Thomas Fransham(tfransham@gmail.com)

Mentors: Vassil Vassilev, Saleem Abdulrasool

Overview

The Clang compiler is part of the LLVM compiler infrastructure and supports various languages
such as C, C++, ObjC and ObjC++. The design of LLVM and Clang allows the compiler to be
extended with plugins. A plugin makes it possible to run extra user defined actions during a
compilation or add new pragmas and attributes that it can process. Dynamically loaded plugins
are supported on unix and darwin, but not on windows because symbols have to be explicitly
exported from shared libraries with either __declspec(dllexport) attribute manually added to c++
declarations or by providing a symbol list to the linker.

Project Motivation
Allow the use of clang plugins on windows without having resort to cumbersome workarounds like
directly compiling plugin code into a clang binary like what chrome currently does for its Plugins or
having to use makeshift solutions to build a list mangled c++ symbol names to pass to the linker for it
to export. The latter involves using LLVM's extract_symbols.py script, which extracts and filters the
symbol names from all the LLVM static libraries using regex name patterns that can end up missing
symbols. Without filtering the clang dll export list symbols can exceed the 64k architectural limit of
DLL exports. It also doesn’t solve the problem for data symbols that need to be explicitly annotated

https://clang.llvm.org/docs/ClangPlugins.html
https://source.chromium.org/chromium/chromium/src/+/main:tools/clang/blink_gc_plugin/CMakeLists.txt;l=31
https://github.com/llvm/llvm-project/blob/main/llvm/utils/extract_symbols.py


with dllimport when referenced by external code outside the DLL for the linker to correctly import
them.

Project Goals
● Allow using the LLVM and Clang C++ API without static linking on windows, many third party

tools hit limitations of the C bindings not exposing something and are forced to distribute a
custom build of libclang with some extra code linked in to export the APIs they need.

● Increase the ecosystem for windows clang plugins to normal end users who could use
prebuilt plugins linked against the official clang binaries created by the LLVM project, instead
of it currently being limited to people who build their own custom version clang.

● Shrink the install size of LLVM on windows from gigabytes to 100s of megabytes by not
having statically link copies of the same llvm code into clang and all the other llvm tools
distributed in official builds.

● Reduce the number of symbols exported by the LLVM shared library on Linux by setting
stricter internal symbol visibility and explicitly exporting symbols that are the public headers
by reusing the same export macros that will be added to the code for windows.

Personal Motivation
This project excites me because it will allow me to contribute to open source and collaborate
with a vibrant community such as the LLVM developers community. The project is intellectually
challenging and will develop my compiler engineering skills to the next level but at the same
time be of enormous benefit to the windows users.

I have already started some initial exploration of some of the more complex manual code
changes required for exporting some LLVM’s classes and familiarized myself with the Clang
AST and tooling API used by the idt clang tool.

A work in progress demonstration of selective exporting of symbols for Windows

Implementation Details
The code from Tom Stellard's existing llvm pull request that starts to annotate things with export
macros can be used as base to start from since it has many of the required manual export fixes
already.

https://github.com/llvm/llvm-project/pull/67502


To automate adding dll export macros classes and functions I will use and update the Clang tool
created by Saleem Abdulrasool and improved by Tom Stellard to automate adding dllexport macros
to classes and non class functions in public include headers. Templates declared extern also need to
be annotated export macros as well, but it needs tobe done slightly differently on Linux vs Windows
where the dllexport macro needs tobe on the template instantiation.

The main issue to solve is when a dll export specifier is put on a class is it will instantiate all class
members this can trigger compile errors from members not currently called by llvm code, common
examples are auto generated copy constructor, assignment operators for class with non movable
members like std::unique_ptr, the most common fix is manually declaring the special members
as deleted, an alternative idea proposed in previous discussion is adding a non movable utility class
was for classes to derive from similar to ones proposed for the c++ std library.

Another problem to handle is members of a templated base can trigger compile errors if instantiated
for a particular parent class that does not implement members to support a particular feature, this is
not normally an issue for normal llvm code that doesn’t use API when it's not supported, but putting
dllexport on a class will.

Timeline

Community Bonding Period

May 1 - May 26 Engage with the community. Establish regular meetings with the mentors. Set up
the development environment. Set up external tools as discussed here and here.
Start an RFC with the proposed approach. Send the first trivial patch.

Coding period begins

Week 1
27.05.2024-02.06.2024

Start exporting information from the lowest level of the llvm build graph.
Deliverable: CMake build system can create a llvm DLL with exported symbols
from libLLVMSupport without the need for an exported symbol list .def file being
passed to the linker.

Week 2
03.06.2024-09.06.2024

Experiment with the build configurations to make better use of the symbol
exports.
Deliverable: Demonstrate reduced artifact binary sizes due to the reduction of
exported symbols.

Week 3-4
10.06.2024-16.06.2024
17.06.2024-23.06.2024

Use the developed idt tool combined with manual fixes to all llvm public API
headers api should be exported. Potentially develop patches for the idt tool to
automate the manual work.
Deliverable: llc is usable on windows when linked with llvm as shared library,
RFC on the more complex fixes required for using dll export on some classes

Week 5 Apply the work at scale. Try to build the llvm project with the new export
infrastructure. Resolve bugs in the export lists and the idt tool.

https://github.com/compnerd/ids
https://github.com/tstellar/ids/tree/annotate-classes
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2895r0.html
https://discourse.llvm.org/t/support-clang-plugins-on-windows/76408/11
https://discourse.llvm.org/t/clang-plugins-on-windows/2262/7


24.06.2024-30.06.2024 Deliverable: llvm tests build and run without any linker errors

Week 6
01.07.2024-07.07.2024

Buffer week if there are delays in patch reviews or other deliverables.

Week 7
08.07.2024-14.07.2024

Try to build the clang project with the new export infrastructure. Resolve bugs in
missing symbol exports and the idt tool.
Deliverable: Clang tools build without any linker errors.

Midterm Evaluations

Week 8
15.07.2024-21.07.2024

Run build and runtime benchmarks on clang using the new symbol exports.
Deliverable: A short technical report comparing performance, binary size
reduction, etc.

Week 9
22.07.2024-28.07.2024

Demonstrate the flexibility of the new approach by enabling the test plugins in the
clang infrastructure. That might require several changes in the cmake
configurations and re-enabling clang’s plugin registry on Windows.
Deliverable: Clang test plugins build without link errors

Week 10
29.07.2024-04.08.2024

Support running of clang test plugins on Windows.
Deliverable: Fully support test clang plugins on windows.

Week 11
05.08.2024-11.08.2024

Scale the clang plugin infrastructure on Windows to real-world plugins such as
the Clad plugin enabling autodiff for C++ in clang.
Deliverable: Demonstrate a complex clang plugin such as Clad running on
windows.

Week 12
12.08.2024-18.08.2024

Buffer week if there are delays in patch reviews or other deliverables.

Week 13
19.08.2024-25.08.2024

Extended testing, developing documentation, presenting the work.
Deliverable: test cases, demonstrated reduction of the binary sizes, blog post
about the achieved results; presentation at the compiler-research.org team
meeting.

Stretch goals
● Update ClangRepl to use Orc runtime on windows to fix missing symbols errors from brittle

hardcoding of a custom list of explicitly exported c++ runtime symbols from the compiled
binary.

● Add more ClangRepl windows tests to make sure it continues to work reliably on windows.
● Prototype support for remote Orc JIT on windows.



Personal details
Name: Thomas fransham
Email: tfransham@gmail.com
Time Zone: GMT
Github: https://github.com/fsfod
Discord: fsfod
Country: UK

https://github.com/fsfod

