
Improving performance of C++ modules in Clang
Source and Production Branch
https://reviews.llvm.org/
https://llvm.org/
https://github.com/llvm/llvm-project/issues/
ROOT-patches is on top of cling-patches.
�. https://github.com/vgvassilev/clang/tree/cling-patches-llvm13
�. https://github.com/vgvassilev/clang/tree/ROOT-patches is on top of 1.

Meeting hours
https://discourse.llvm.org/t/c-modules-bi-weekly-informal-implementers-meeting/61874
https://compiler-research.org/meetings/

Machine Configuration (domestic, personal laptops) (Tapasweni)
Mac OS big Sur
Ubuntu 18.04
Ubuntu 20.04
Debian
1TB Hard disk, 8 GB RAM
i5 to i7
Clang has a perf stat system - we will use that in a first approximation.
Notes: It is a compiler flag that you can use on your system.
https://godbolt.org/z/s61fxoYPs

Previous work
https://reviews.llvm.org/D41416
Patches relatively easy to upstream:

Patch Title Summary/Info State Link

Implement soft reset
of the diagnostics
engine.

Added to
vgvassilev/clang.

https://github.com/vgvassilev/clang/commit/244d88da3cda561aa9b2360

Mark the file entry
invalid, until reread.
Invalidate SLocEntry
cach readd it on
reread.

Added to
vgvassilev/clang.

https://github.com/vgvassilev/clang/commit/6ffdac0df994b96f3992b055

Propagate cache flags
from LookupFile() to
FileManager::getFile().

Added to
vgvassilev/clang.

https://github.com/vgvassilev/clang/commit/0cc9535a385f0039d6ef926

Pass the OpenFile
flag also to
DirectoryLookup.

Added to
vgvassilev/clang.

 https://github.com/vgvassilev/clang/commit/f475cd9d1da48c1a758a20b

Survive #pragma
once from virtual file.

Added to
vgvassilev/clang.

 https://github.com/vgvassilev/clang/commit/b94932abce�baecaf4c5801

Allow interfaces to
operate on in-memory
buffers with no source
location info.

Added to
vgvassilev/clang.

 https://github.com/vgvassilev/clang/commit/5a93d036190e2c29ec567e

Fix assertion when Added to  https://github.com/vgvassilev/clang/commit/1c6cc386f62f9a5a87cf268b

https://reviews.llvm.org/
https://llvm.org/
https://github.com/llvm/llvm-project/issues/
https://github.com/vgvassilev/clang/tree/cling-patches-llvm13
https://github.com/vgvassilev/clang/tree/ROOT-patches
https://discourse.llvm.org/t/c-modules-bi-weekly-informal-implementers-meeting/61874
https://compiler-research.org/meetings/
https://godbolt.org/z/s61fxoYPs
https://reviews.llvm.org/D41416
https://github.com/vgvassilev
https://github.com/vgvassilev/clang
https://github.com/vgvassilev/clang/commit/244d88da3cda561aa9b23600dedb9fbb3931c5c1
https://github.com/vgvassilev
https://github.com/vgvassilev/clang
https://github.com/vgvassilev/clang/commit/6ffdac0df994b96f3992b05523007c3ebc712a86
https://github.com/vgvassilev
https://github.com/vgvassilev/clang
https://github.com/vgvassilev/clang/commit/0cc9535a385f0039d6ef926fe6b2576ffe5b93b7
https://github.com/vgvassilev
https://github.com/vgvassilev/clang
https://github.com/vgvassilev/clang/commit/f475cd9d1da48c1a758a20b1ee581c2b7f12e5c7
https://paper.dropbox.com/?q=%23pragma
https://github.com/vgvassilev
https://github.com/vgvassilev/clang
https://github.com/vgvassilev/clang/commit/b94932abcefbaecaf4c5801bbe358eba7bf9297b
https://github.com/vgvassilev
https://github.com/vgvassilev/clang
https://github.com/vgvassilev/clang/commit/5a93d036190e2c29ec567e341e69a3a3e654f6bb
https://github.com/vgvassilev/clang/commit/1c6cc386f62f9a5a87cf268b4d35199721aec0f4


removing decls
coming from a
pch/pcm

vgvassilev/clang.

Problem Statement
The C++ modules technology aims to provide a scalable compilation model for the C++ language. The C++ Modules technology in
Clang provides an io-efficient, on-disk representation capable to reduce build times and peak memory usage. The internal compiler
state such as the abstract syntax tree (AST) is stored on disk and lazily loaded on demand. C++ Modules improve the memory
footprint for interpreted C++ through the Cling C++ interpreter developed by CERN and the compiler research group at Princeton.
The current implementation is pretty good at making most operations on demand. 
However in a few cases, we eagerly load pieces of the AST, for example at module import time [1] and upon selecting a suitable
template specialization. When selecting the template specialization we load all template specializations from the module files just to
find out they are not suitable. There is a patch [2] that partially solves this issue by introducing a template argument hash and use it
to look up the candidates without deserializing them. However, the data structure it uses to store the hashes leads to quadratic
search which is inefficient when the number of modules becomes sufficiently large. 

Test Project(s)
What do you think would be apt?
�. Size — du -hs *pcm
�. Memory Consumption — /usr/bin/time -v root.exe -l -b -q tutorials/hsimple.C
�. Use the internal performance counters in clang - 

https://godbolt.org/z/s61fxoYPs

Tasks
Investigate and resolve eager deserialization where possible
Open a review, merge the patch in llvm, revert the relevant patch from ROOT, backport the mainline patch and check if all test
pass: https://github.com/root-project/root
Rework the patch to use on-disk hash tables to avoid the quadratic search complexity

https://reviews.llvm.org/D41416
Develop the necessary test cases
Tests, CI, Documentation.
Measure performance improvements
How to model the partial template specializations

Bugs To Resolve

Bug Fixes/Usefulness PR TODOs Summary/Remark

https://bugs.llvm.org/show_bug.cgi?id=45021

Metrics
�. Number of landed patches
�. Successfully landed D41416
�. Improved startup time
�. Reduced memory consumption — ask Google to run the reimplemenation of D41416 on their builds
�. Stretch metric/goal — Build ROOT with -Druntime_cxxmodules=On on Windows

Optimizations

https://github.com/vgvassilev
https://github.com/vgvassilev/clang
https://godbolt.org/z/s61fxoYPs
https://github.com/root-project/root
https://reviews.llvm.org/D41416
https://bugs.llvm.org/show_bug.cgi?id=45021

