
Proposed by:

Sunho Kim

GSOC Proposal
Write JITLink support for a new

format/architecture (ELF/AARCH64)



Contact Details
Name: Sunho Kim

Github username: sunho

Email: ksunhokim123@gmail.com

LLVM discord username: sunho

LLVM discourse username: sunho

Project Info

Project Name: Write JITLink support for a new format/architecture (ELF/AARCH64)

Mentors: Vassil Vassilev, Lang Hames, Stefan Gränitz

Size of Project: Large

Expected Deliverables: JITLink specialization for ELF/AARCH64 format.

Introduction to LLVM and JIT

LLVM is an open source framework for building compiler toolchains. It is a

powerhouse behind various modern languages such as swift, rust and julia

which use LLVM for generating efficient machine code. There are two major

approaches in the compiler world: AOT (ahead of time) and JIT (just in time).

In AOT compilation, the compiler transforms the entire source code to

machine code before the runtime. Whereas in JIT compilation, the compiler

runs “just in time” during the runtime, transforming some part of source code

to machine code on demand. Since AOT compilation and JIT compilation differ

in many characteristics, LLVM supports separate APIs and toolchains

dedicated for JIT compilers.



JITLink API and its Motivation

JITLink is LLVM’s new JIT linker API--the low-level API that transforms

compiler output (relocatable object files) into ready-to-execute bytes in

memory. It was developed to eliminate the restrictions of previous JIT linker

API RuntimeDyld. Among those restrictions, the most critical ones are lack of

support for the small code model and prohibition of certain features such as

thread local storage. The Julia language team switched to JITLink API recently

because of support for the small code model. When adding support for

aarch64-darwin target, Julia team suffered from bugs within the large code

model implementation of aarch64 backend, which caused numerous random

hangs and segmentation faults. After switching to JITLink API with a small

code model, these segmentation faults disappeared.

Project Description

JITLink’s generic linker algorithm needs to be specialized to support the target

object format (COFF, ELF, MachO), and architecture (arm, arm64, i386, x86-64).

LLVM already has mature implementations of JITLink for MachO/arm64 and

MachO/x86-64, and a relatively new implementation for ELF/x86-64. In this

project, I will write JITLink specialization for ELF/aarch64 target by

reusing/refactoring the already existing specialization for ELF/x86.



Roadmap

● Set up basic linker implementation that loads elf object file and iterate

over relocation sections

■ Would be preferable if we can separate out more of the common

logic from ELF/X86 and MachO/ARM64 format.

■ Most of the plumbing work is already done in the upstream.

● Implement basic fixup edges that are needed for running hello world c

program

■ These are the relocation entries found in hello world c object file:

R_AARCH64_ABS64, R_AARCH64_PREL32,

R_AARCH64_ADD_ABS_LO12_NC, R_AARCH64_ADR_PREL_PG_HI21,

R_AARCH64_CALL26

■ I would need to add code to applyFixup function in ELF_aarch64.cpp.

■ Adding test cases that are similar to ELF_x86-64_common.s would

be preferable, utilizing llvm filecheck and jitlink-check infrastructure.

● Implement global offset table relocation to run c program with literals

and global variables

■ These are the additional relocation entries found in a bit more

complicated hello world c object file that is using global variable and

string literal: R_AARCH64_ADR_GOT_PAGE,

R_AARCH64_LD64_GOTOFF_LO15,

R_AARCH64_LD64_GOT_LO12_NC,

R_AARCH64_ADR_PREL_PG_HI21, R_AARCH64_ADD_ABS_LO12_NC

■ I would need to add code to applyFixup function and create a new

TableManager that reserves the entries for GOT.

https://github.com/llvm/llvm-project/blob/281b7eeb149d236dd4f2c1ab976cce361de4e057/llvm/lib/ExecutionEngine/JITLink/ELF_aarch64.cpp#L47
https://github.com/llvm/llvm-project/blob/281b7eeb149d236dd4f2c1ab976cce361de4e057/llvm/test/ExecutionEngine/JITLink/X86/ELF_x86-64_common.s#L1
https://github.com/llvm/llvm-project/blob/281b7eeb149d236dd4f2c1ab976cce361de4e057/llvm/lib/ExecutionEngine/JITLink/ELF_aarch64.cpp#L47
https://github.com/llvm/llvm-project/blob/09c2b7c35af8c4bad39f03e9f60df8bd07323028/llvm/include/llvm/ExecutionEngine/JITLink/TableManager.h


● Implement thread local storage relocation edges

■ These are the additional relocation entries found in a c++ program

that includes thread, iostream, and uses thread_local variable:

R_AARCH64_TLSDESC_ADR_PAGE21,R_AARCH64_TLSDESC_LD64_L

O12, R_AARCH64_TLSDESC_ADD_LO12,

R_AARCH64_TLSDESC_CALL

■ I might have to account for aarch64 linux abi which uses the

TPIDR_EL0 system register for doing TLS related operations.

● Test julia lang on aarch64 linux with added ELF/AARCH64 jitlink support

and fix bugs discovered accordingly

■ Related issue: https://github.com/JuliaLang/julia/issues/42295

■ Would need to turn on small code model

Works needed to be done:

ELF format library and generic JITLink implementation is already written in the

llvm upstream. The generic ELFLinkGraphBuilder class implementation

receives the ELFFile class instance and emits JITLink graphs containing

external/internal symbols. In order to add support for ELF/AARCH64 format,

we need to implement specialization dedicated to ELF/AARCH64 format and

implement “fixup edges” that account for each target specific relocation type

of ELF/AARCH64. Fixup edges implement the patching of stub addresses to

the relocated symbol as requested by relocation entry of elf file. For example,

in the ELF/X86 backend, applyFixup function patches the code like this:

https://github.com/JuliaLang/julia/issues/42295


This corresponds to ELF/x86 relocation entry R_X86_64_32S. Numerous

relocation entry types are used by LLVM codegen, so in order to link in-memory

form object files generated by LLVM toolchain, we must have fixup edge

implementation for each of these. An interesting possibility to look at would be

to separate out shared aarch64 patch logic from MachO/arm64 target. As an

example, ARM64_RELOC_BRANCH26 of MachO/ARM64 and

R_AARCH64_CALL26 of ELF/AARCH64 do a very similar kind of modification.

One of the important relocation entries to look into is those related to the

global offset table. Global offset table is used to achieve position independent

code–the code that can be executed regardless of where it is placed within

memory. It is heavily utilized in llvm codegen for implementing global

variables, literal constants, and more.

Timeline

April 20 – May 23: (before coding)

● Familiarize myself with the llvm jit codebase and infrastructure.

June 13 – June 20 (Official coding period starts):

● Start writing the implementation.

● Prepare test cases extracting from a simple hello world c program.

● Deliverable: test cases required in the next week and basic structure

needed before implementing fixup edges.

June 20 – June 27:

● Support following relocation types

○ R_AARCH64_ABS64

○ R_AARCH64_PREL32

○ R_AARCH64_ADD_ABS_LO12_NC

○ R_AARCH64_ADR_PREL_PG_HI21

○ R_AARCH64_CALL26



● Make sure external symbols are resolved correctly

● Deliverable: ability to run a c program that prints one integer using

llvm-jitlink tool in aarch64 linux.

June 27 – July 3:

● Support following relocation types

○ R_AARCH64_ADR_PREL_PG_HI21

○ R_AARCH64_ADD_ABS_LO12_NC

● Handle multiple relocation sections

● Fix bugs and tidy up the code

● Mostly prepare for the next major step

● Deliverable: ability to run a simple c program which have multiple ‘.rela.text’

sections

July 4 – July 11:

● Add test cases with global offset table

● Add the support for global offset table

● Support following relocation types

○ R_AARCH64_ADR_GOT_PAGE

○ R_AARCH64_LD64_GOT_LO12_NC

○ R_AARCH64_LD64_GOTOFF_LO15

● Deliverable: ability to run a hello world c program with global variable and

string literals



July 12 – July 18:

● Attempt running a simple c++ program that includes iostream

● Add thread local storage TableManager

● Implement following relocation types:

○ R_AARCH64_TLSDESC_ADR_PAGE21

○ R_AARCH64_TLSDESC_LD64_LO12

○ R_AARCH64_TLSDESC_ADD_LO12

○ R_AARCH64_TLSDESC_CALL

● Deliverable: ability to run a simple c++ program which include iostream

July 19 – July 26:

● Attempt running a c++ program that create threads and uses thread_local

variable

● Fix bugs that are discovered during this process

● Deliverable: ability to run a somewhat complex c++ program using multiple

threads and thread_local variables

JULY 29th MID TERM EVALUATION

August 1 – August 8:

● Finish the basic implementation and test the implementation against

typical use cases.

● Add simple link optimization passes if a significant bottleneck is

discovered.

● Write documentation

● Deliverable: Concise documentations



August 9 – August 16:

● Test the finished implementation against julia lang codegen on aarch64

● Fix bugs that are discovered during the process

● Deliverable: Measure of the quality of the product in a real world use cases

August 17 – September 5:

● Continued polishing and bug fixes.

● Deliverable: Mature ELF/AARCH64 format support

Personal Details

GSOC participation:

This is my first time registering for the GSOC program and I didn’t apply to

any other gsoc project other than this.

What are your prior compiler and compiler-related experience, if any (e.g.

studies at the University, prior contributions)?

I have taken compiler courses in my college, but most of my compiler

experience was gained by tweaking open source compiler projects (e.g. llvm,

qemu) and working on hobby compiler projects in my free time. I learned the

concept of IR language and JIT compilation by modifying the dynamic

recompiler of qemu in order to use it for my emulator project. I have written a

JIT compiler from scratch for a language called aheui. It features a simple IR

language and multiple backends targeting x86, wasm, and aarch64. After

writing an optimization pass that folds memory load-store pairs to one SSA

value, I was able to surpass the fastest known implementation of aheui

language that was using rpython by an order of magnitude.

https://aheui.readthedocs.io/en/latest/specs.en.html


Most recently, I have contributed two minor patches to llvm aarch64

backend last month. One of which was adding a DAGCombiner pass that

reduces the machine instruction count of the pattern generated by the negative

absolute value function. Another patch was a fix to sink operands of a certain

simd instruction so that they can be matched by tablegen pattern that

generates a more fitting instruction even if some of the operands are in

another basic block.

Have you had any prior contributions to LLVM? If yes, please provide links to

these contributions.

https://reviews.llvm.org/D117944

https://reviews.llvm.org/D118595

What programming languages do you have experience with and please

estimate your level of experience? (e.g. C, C++, Python, Rust, etc.)

I’m very familiar with c++ as I used it for more than 4 years on a regular

basis. These are some of the major projects I have written in c++:

● GPU accelerated vulkan ray tracing renderer:

https://github.com/sunho/GPUSpectral

● JIT compiler for aheui language:

https://github.com/sunho/AheuiJIT

In addition to that, I frequently participate in competitive algorithm

contests using c++ where I have to write efficient and debuggable c++ code

quickly. I’m familiar with some graph theoretic topics such as bipartite

matching and graph coloring because of my competitive programming

experience.

https://reviews.llvm.org/D117944
https://reviews.llvm.org/D118595
https://github.com/sunho/GPUSpectral
https://aheui.readthedocs.io/en/latest/specs.en.html
https://github.com/sunho/AheuiJIT


What other commitments do you have that might affect your ability to work

during the GSOC period (exams, classes, holidays, other jobs, weddings,

etc.)? Please list each and when they occur.

I have courseworks in the early period of gsoc, but I have no special

commitment other than college. During the summer vacation which starts

from June, I can work on llvm full time.


