
GSOC report

Information

Project: Re-optimization using JITLink

Organization: LLVM compiler infrastructure

Contributor: Sunho Kim

Background

For initial spec and background you can see the original proposal pdf here:

https://compiler-research.org/assets/docs/Sunho_Kim_Proposal_2023.pdf

Goals

To extend JITLink API and ORC runtime to support re-optimization use cases

To design and implement ORC API for customizable re-optimization

To enable re-optimization in clang-repl, LLVM's C++ JIT interpreter

To implement a profile guided optimization using re-optimization API

To write a clang-repl demo that showcases the re-optimization feature

Report

Extending JITLink API

In order to implement re-optimization, we need an ability to "redirect" call to

certain symbol into another. We decided that one of the most straightforward way to

achieve this is through creating "stubs" which will jump to certain code address by

using its modifiable function pointer. (this function pointer is atomically swapped to

new address when the redirection occurs)

I extended the JITLink API by adding cross-architecture stub creation API. This API

works in all platforms and architectures that JITLink supports and through this we can

create the redirectable stubs through by using JITLink.

Designing and implementing ORC API for re-optimization part 1:

Redirection API

We introduced new " RedirectionManager " abstraction that redirects symbol to another.

This RedirectionManager is used to replace the call to old version of function into

new version of function. We realized that when stubs are used to implement

redirection, we actually need to materialize stub symbols with the same name as the

original symbol.

Thus, the RedirectableSymbolManager was introduced to also abstract the creation of

"redirectable" symbols. Theoretically, we only need RedirectionManager to implement

re-optimization if we actually rewrite the call instructions to point at the new

version of function. But, for now, we decided to keep it simple since instruction

rewriting is a lot more complicated than the stubs approach. Below is the interfaces

of RedirectionManager and RedirectableSymbolManager .

https://compiler-research.org/assets/docs/Sunho_Kim_Proposal_2023.pdf

/// Base class for performing redirection of call to symbol to another symbol in

/// runtime.

class RedirectionManager {

public:

 /// Symbol name to symbol definition map.

 using SymbolAddrMap = DenseMap<SymbolStringPtr, ExecutorSymbolDef>;

 virtual ~RedirectionManager() = default;

 /// Change the redirection destination of given symbols to new destination

 /// symbols.

 virtual Error redirect(JITDylib &JD, const SymbolAddrMap &NewDests) = 0;

 /// Change the redirection destination of given symbol to new destination

 /// symbol.

 virtual Error redirect(JITDylib &JD, SymbolStringPtr Symbol,

 ExecutorSymbolDef NewDest) {

 return redirect(JD, {{Symbol, NewDest}});

 }

private:

 virtual void anchor();

};

/// Base class for managing redirectable symbols in which a call

/// gets redirected to another symbol in runtime.

class RedirectableSymbolManager : public RedirectionManager {

public:

 /// Create redirectable symbols with given symbol names and initial

 /// desitnation symbol addresses.

 Error createRedirectableSymbols(ResourceTrackerSP RT,

 const SymbolMap &InitialDests);

 /// Create a single redirectable symbol with given symbol name and initial

 /// desitnation symbol address.

 Error createRedirectableSymbol(ResourceTrackerSP RT, SymbolStringPtr Symbol,

 ExecutorSymbolDef InitialDest) {

 return createRedirectableSymbols(RT, {{Symbol, InitialDest}});

 }

 /// Emit redirectable symbol

 virtual void

 emitRedirectableSymbols(std::unique_ptr<MaterializationResponsibility> MR,

 const SymbolMap &InitialDests) = 0;

};

Something to note here is that we have a " emitRedirectableSymbol " method. This was

needed since when we are "replacing" the original symbols with redirectable stub

symbols, the MaterializationUnit is already emitting the original symbol that we

can't simply let " RedirectableSymbolManager " to redefine the symbol that MU is

responsible for. In order to support this kind of use case, we decided to expose raw

emission process to the public and createRedirectableSymbol is simply a wrapper

function that uses emitRedirectableSymbol method to define new stub symbols.

Then, I wrote JITLinkRedirectableSymbolManager class which implements

RedirectableSymbolManager using JITLink API. It actually pools stubs and create stubs

in batch since the overhead of create LinkGraph for each stub might be costly.

Designing and implementing ORC API for re-optimization part 2:

ReOptimizeLayer

After we have done redirection API, actual implementation of re-optimization began. A

new IRLayer ReOptimizeLayer was introduced to support re-optimization of IR modules.

There were many abstraction levels where redirection could be implemented, but I ended

up doing it at IR level since that brings a lot of re-optimization techniques to be

implemented easily by transforming IR directly. From API perspective, the most

flexible abstraction level to do this would be at FrontEnd AST level. In the future,

we might extend the API to support custom MaterializationUnit --not just

IRMaterializationUnit --in order to give clients power to do any arbitrary re-

optimization using their favorite intermediate level.

ReOptimizeLayer simply takes IRMaterializationUnit and replace those with

redirectable symbols using RedirectableSymbolManager . It sets the initial destination

of redirectable stubs to point at function address that got emitted by next IR layer.

(e.g. IRCompilerLayer)

It transforms the initial version of function to have a "re-optimization request" code

that simply calls orc-runtime __orc_rt_reoptimize function. For instance, the original

IR function below:

define dso_local noundef i32 @_Z1fv() #0 {

entry:

 ret i32 5

}

gets transformed to this:

define dso_local noundef i32 @_Z1fv() #0 {

entry:

 %0 = load i64, ptr @__orc_reopt_counter, align 8

 %1 = icmp eq i64 %0, 20

 %2 = add i64 %0, 1

 store i64 %2, ptr @__orc_reopt_counter, align 8

 br i1 %1, label %3, label %4

3: ; preds = %entry

 call void @__orc_rt_reoptimize(i64 3, i32 0)

 br label %4

4: ; preds = %entry, %3

 ret i32 5

}

Enabling re-optimization in clang-repl

It didn't take a lot of efforts to enable re-optimization in clang-repl. I first

enabled orc runtime in clang-repl since it would be handy to implement advanced

profile guided optimizations. There was a little mismatch what clang-repl expects from

how runtime runs static initializers and how ELF orc runtime runs it. "dlopen" on

library ran static newly installed initailizers before but new orc runtime decided to

not run them. We're still discussing what to do about this. My mentor Lang suggested

to add a new dl function which made sense to me but Lang also wants to look at

alternatives as well.

Other than that, it was matter of just adding few layers to LLJIT instance. For

enabling new layers, I proposed new LLJIT API to do it. Previously, we had

LLLazyJIT which had lazy compilation enabled by adding CompileOnDemandLayer to the

stack. But, now we got another layer to the party, it would be not a good design to

introduce LLReOptJIT class since we might also want " LLLazyReOptJIT " and so on.

I proposed LLLayerJI API which allows something like below.

LLLayerJIT LayerJIT;

LayerJIT.addLayer(std::make_unique<LLReOptimizeLayer>()); // Add re-optimization

LayerJIT.addLayer(std::make_unique<LLCompileOnDemandLayer>()); // Add lazy-compilation

I haven't polished this API enough to land in tree yet but I think it's a really cool

API design somewhat resembling tensorflow's Keras API.

Since clang-repl rely entirely on LLJIT to do JIT stuffs, getting re-optimization

running for LLJIT was all we needed to enable it in calng-repl. Now, we got a nice

real-world experiment environment where we can test new re-optimization techniques and

do benchmarks to see if they are win.

Implement profile guided optimization

Now fun time begins :) Since I got all the infra needed for re-optimization

techniques, I could implement any kind of profile guided optimization by transforming

IR module freely.

First thing I tried was going from -O0 to -O2 when function call count exceeds 10. In

some of the cases I tested, this offered a nice trade-off between time spent on

compilation and runtime. For instance, one testcase ran in 0.6 seconds with -O2 and

0.4 seconds with -O0. With reopt on, it ran in 0.5 seconds--just in the middle of the

two.

Second thing I tried was de-virtualization PGO which instruments indirect function

calls to get which function addresses that indirect call jumps to and inline them when

re-optimization happend. I haven't polished the code to be upstreamable yet but it

implements instrumentation on orc-runtime side which simplifies implementation a lot.

(here is the branch that implements this:) In some of the cases, this can get up to

10% gain compared to non reopt version. There are regressions cases since the

instrumentation has huge cost though. So, when the correct function was non re-

optimized it has lead to huge performance drop. We do need to look into them further.

Future goals

Look into optimizing function with a huge loop up front. The penalty we get

when we couldn't re-optimize certain function are substantial.

Look into instruction rewriting redirection manager. The indirect calls from

redirectable stubs can gives some performance drop as much as 5% from my

observations.

Land more codes -- this is something I'd do it soon even after GSOC ends

officially.

Links to the patches and PRs

https://reviews.llvm.org/D155557

https://reviews.llvm.org/D157378

https://github.com/llvm/llvm-project/pull/66802

https://github.com/llvm/llvm-project/pull/66812

https://github.com/llvm/llvm-project/pull/67050

A lot of unpolished over 1000 lines of additions here:

https://github.com/sunho/llvm-project/tree/karikari

Final Words

I'm really grateful for my GSOC mentors for being such flexible on schedule even to

extend the final deadline one month. They also provided enormous help on getting the

right design as well as suggesting various interesting ideas to try out that I was not

aware of.

https://reviews.llvm.org/D155557
https://reviews.llvm.org/D157378
https://github.com/llvm/llvm-project/pull/66802
https://github.com/llvm/llvm-project/pull/66812
https://github.com/llvm/llvm-project/pull/67050
https://github.com/sunho/llvm-project/tree/karikari

