GSOC 2022 final report

This report summarizes

Basic Info

e Name: Sunho Kim

Email: ksunhokim123@gmail.com

Github Username: sunho

¢ Organization: LLVM

Project Title: Write JITLink support for new format/architecture

About LLVM

LLVM is an open source framework for building compiler toolchains. It is a
powerhouse behind various modern languages such as swift, rust and julia which
use LLVM for generating efficient machine code. There are two major
approaches in the compiler world: AOT (ahead of time) and JIT (just in time). In
AOT compilation, the compiler transforms the entire source code to machine
code before the runtime. Whereas in JIT compilation, the compiler runs “just in
time” during the runtime, transforming some part of source code to machine
code on demand. Since AOT compilation and JIT compilation differ in many
characteristics, LLVM supports separate APIs and toolchains dedicated for JIT
compilers

Project description

JITLink is LLVM’s new JIT linker designed to support a variety of new features,
which includes full static initializer, thread local storage, and small code model,
that were not possible in RuntimeDyld, the old JIT linker API. JITLink’s generic
linker algorithm needs to be specialized to support the target object format
(COFF, ELF, MachO), and architecture (arm, arm64, i386, x86-64). This project
aims to implement the JITLink specialization for ELF/aarch64 and COFF/x86-
64.


mailto:ksunhokim123@gmail.com

Approach and workflow

Described in detail in fowlling slides: Road Map, Final Progress.

Goals

e Write JITLink backend for ELF/AARCH64 (arm64 gnu linux)

o

o

Implement ELF/AARCH64 relocations in JITLink.

Implement orc runtime features for armé64 linux including TLS variable
registration.

Battle-test the implementations by enabling JITLink in julia language
and check it fixed JIT issues in arm64 linux.

e Write JITLink backend for COFF/X86_64 (x86_64 msvc windows)

o

Write a generic COFFLinkGraphBuilder that handle PE/COFF object
files.

Extend JITLink/ORC infrastructure to deal with PE/COFF specific
linking rules.

Implement COFF/X86_ 64 relocations in JITLink.

Write a foundation for COFF orc runtime with a purpose to support SEH
execption table, atexit handler, and static initializer registration.
Battle-test the implementations by trying to statically link full VC
runtime libraries and microsoft STL library.

Battle-test the implementations by enabling JITLink in clang-repl and
check it enabled execution of complicated MSVC compliant code using
STL, win32 api, and third-party static library out-of-shelf

Landed patches

ELF/AARCHG64

e D128601 [ORC][ORC_RT][AArch64] Implement TLS descriptor in
ELFNixPlatform.
e D126286 [JITLink][ELF/AARCHG64] Generic aarch64 patch fixups

e PR45859 Enable JITLink on aarch64 linux. (Julia)

e D126628 [JITLink][AARCH64][NFC] Create isLoadStoreImmz12 function by
splitting getPageOffset12Shift


https://docs.google.com/presentation/d/1G5QS8N1WG2qdPJ--mqLIC3CU0Tn50X0DIxwsfxIIPg8/edit?usp=sharing
https://docs.google.com/presentation/d/1x8pdFIL-wOanNq2CvqR8zJu148-qE6_5wTvvSTv0Ggg/edit?usp=sharing
https://reviews.llvm.org/D128601
https://reviews.llvm.org/D126286
https://github.com/JuliaLang/julia/pull/45859
https://reviews.llvm.org/D126628

D126287 [JITLink][ELF/AARCH64] Implement

R_AARCH64_ADR_PREL PG_HI21 and

R_AARCH64_ADD_ABS LO12_NC

D126630 [JITLink][ELF/AARCH64] Implement
R_AARCH64_LDST*_ABS_LO12_NC relocation types

D127057 [JITLink][ELF/AARCH64] Implement

R_AARCH64 ADR_GOT_PAGE and R_AARCH64_LD64_GOT LO12_ NC
D127058 [JITLink][ELF/AARCH64] Implement R_AARCH64_PREL32 and
R_AARCHG64_PREL64

D126387 [JITLink][AARCH64] Fix overflow range of Page21

D127059 [JITLink][ELF/AARCH64] Implement R_AARCH64_JUMP26
D127061 [JITLink][ELF/AARCH64] Implement Procedure Linkage Table
D127062 [JITLink] Remove CodeAlignmentFactor and DataAlignmentFactor
validation

D127063 [JITLink][ELF/AARCH64] Implement eh frame handling

D127558 [JITLink][AArch64] Unify table managers of ELF and MachO.
D127559 [JITLink][AArch64] Lift fixup functions from aarch64.cpp to
aarch64.h. (NFC)

D127584 [JITLink][AArch64] Implement MoveWide16 generic edge.
D127585 [JITLink][ELF][AArch64] Implement
R_AARCH64_MOVW_UABS_G*_NC.

D127715 [JITLink][ELF] Log enum name of unsupported relocation type.
D127940 [JITLink][AArch64][NFC] Suppress unused variable error.
D127060 [ORC] Add initial support for aarch64 in ELFNixPlatform

COFF/X86_64

D128968 [JITLink][COFF] Initial COFF support.

D130456 [ORC][COFF] Introduce COFFVCRuntimeBootstrapper.
D130479 [ORC_RT][COFF] Initial platform support for COFF/x86_64.
D131833 [ORC][COFF] Introduce DLLImportDefinitionGenerator.

D129720 [JITLink][COFF] Don't dead strip COMDAT associative symbol.
D129721 [JITLink][COFF] Handle out-of-order COMDAT second symbol.
D129754 [JITLink][COFF] Implement IMAGE_SYM_ CLASS_LABEL.
D129764 [ORC][COFF] Properly set weak flag to COMDAT symbols.
D129936 [JITLink][COFF][x86_64] Reimplement ADDR32NB/REL32.
D129937 [JITLink][COFF] Handle duplicate external symbols.

D129939 [JITLink][COFF] Implement
IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY/LIBRARY.


https://reviews.llvm.org/D126287
https://reviews.llvm.org/D126630
https://reviews.llvm.org/D127057
https://reviews.llvm.org/D127058
https://reviews.llvm.org/D126387
https://reviews.llvm.org/D127059
https://reviews.llvm.org/D127061
https://reviews.llvm.org/D127062
https://reviews.llvm.org/D127063
https://reviews.llvm.org/D127558
https://reviews.llvm.org/D127559
https://reviews.llvm.org/D127584
https://reviews.llvm.org/D127585
https://reviews.llvm.org/D127715
https://reviews.llvm.org/D127940
https://reviews.llvm.org/D127060
https://reviews.llvm.org/D128968
https://reviews.llvm.org/D130456
https://reviews.llvm.org/D130479
https://reviews.llvm.org/D131833
https://reviews.llvm.org/D129720
https://reviews.llvm.org/D129721
https://reviews.llvm.org/D129754
https://reviews.llvm.org/D129764
https://reviews.llvm.org/D129936
https://reviews.llvm.org/D129937
https://reviews.llvm.org/D129939

D129941 [JITLink][COFF] Implement
IMAGE_COMDAT_SELECT_LARGEST partially.

D129944 [JITLink][COFF] Consider lib/dll files in llvm-jitlink.

D129945 [JITLink][COFF] Don't dead strip seh frame of exported function.
D129952 [ORC][COFF] Handle COFF import files of static archive.
D130175 [JITLink][COFF] Implement dllimport stubs.

D130178 [JITLink][COFF][x86_64] Implement ADDR64 relocation.
D130276 [JITLink][COFF] Implement include/alternatename linker
directive.

D130450 [JITLink] Relax zero-fill edge assertions.

D130452 [JITLink][COFF][x86_64] Implement remaining
IMAGE_REL_AMDG64_REL32_*.

D130454 [JITLink][COFF] Handle COMDAT symbol with offset.

D130898 [IntelJITEvents] Add missing include.

D130275 [JITLink][COFF][x86_64] Implement SECTION/SECREL
relocation.

D130451 [JITLink][COFF][x86_64] Stub SECREL relocation to external
symbol.

D132524 [JITLink][COFF] Use DLLImportDefinitionGenerator for creating
PLT stubs.

D132525 [ORC][ORC_RT][COFF] Support dynamic VC runtime.

D132780 [ORC][ORC_RT][COFF] Remove public bootstrap method.
D132781 [ORC][LLJIT] Move orc platform support to public orc namespace.

clang-repl

e D128037 [ORC][LLJIT] Define atexit symbol in
GenericLLVMIRPIlatformSupport.

D127991 [clang-repl] Remove memory leak of ASTContext/TargetMachine.
D129175 [ORC] Fix weak hidden symbols failure on PPC with runtimedyld
D129242 [clang-repl] Add host exception support check utility flag.
D1285849 [clang-repl] Support destructors of global objects.

D130788 [clang-repl] Disable building when
LLVM_STATIC_LINK_CXX_STDLIB is ON.

Communication and Work Management

e We had a discord group chat where I could chat freely with all of the
mentors. Our mentors responded to all of my questions very promptly
(within few hours to 2 days) with a great length (sometimes hundreds of


https://reviews.llvm.org/D129941
https://reviews.llvm.org/D129944
https://reviews.llvm.org/D129945
https://reviews.llvm.org/D129952
https://reviews.llvm.org/D130175
https://reviews.llvm.org/D130178
https://reviews.llvm.org/D130276
https://reviews.llvm.org/D130450
https://reviews.llvm.org/D130452
https://reviews.llvm.org/D130454
https://reviews.llvm.org/D130898
https://reviews.llvm.org/D130275
https://reviews.llvm.org/D130451
https://reviews.llvm.org/D132524
https://reviews.llvm.org/D132525
https://reviews.llvm.org/D132780
https://reviews.llvm.org/D132781
https://reviews.llvm.org/D128037
https://reviews.llvm.org/D127991
https://reviews.llvm.org/D129175
https://reviews.llvm.org/D129242
https://reviews.llvm.org/D128589
https://reviews.llvm.org/D130788

words) of insightful answers. It never ceases to suprise me how thougtful and
on-track are the discussion from my mentors.

e Code review of my pathces was all done by the same mentors in this GSOC
group. It was very thorough and prompt. When we required a non-trivial
high-level decision, we chatted in the real-time discord group chat about a
variety of solutions seeking for the best engineering trade-offs.

e In general, I was free to do my own desired amount of work in each weak as
long as I was aware of the immediate weakly goals. However, my mentors
quickly gave me a direction for the next tasks each time I finished a certain
goal so that I was not lost.

o Ijoined a weekly zoom meeting with other GSOC contributors in compiler-
research group in Princton University where we shared our progresses in the
last week with occasional presentations. I had done two presentations in this
group which helped me to organize the goals of my project.

Future scope

TODOs

e Enabling JITLink in clang-repl for x86_64 msvc windows. I believe clang-
repl and ORC JIT stack can evolve together as clang and llvm IR/MC stack
has evolved together. Espeically, clang-repl test cases are executed for real in
almost all buildbots where JIT is supported. Enabling full COFF backend in
clang-repl would allow us to discover shortcomes in the new JITLink support
promptly as well as pushing msve c++ support in clang-repl to another level.
I had a proof-of-concept integration with clang-repl on local branch which
worked pretty perfectly, but haven't polished it and submit a patch to in-tree.

Future (long term) goals

e Better support for COFF JITLink backend without ORC runtime case.
Currently, COFF JITLink backend can't even run hello world ¢ program
without orc runtime. In order for JITLink to be a drop-in replacment of
runtimedyld, it should be possible to execute at least case like hello world by
its own. Espeically, a lot of JIT users (namely those who develop machine
language recompiler or reoptimizer) don't need all complicated runtime
features such as SEH execptions.

e Better documentation and examples on how to use new JIT infrastructures
such as JITLink and ORC runtime. There are bunch of documentations on
ORC and JITLink but they are somewhat outdated.



e Enabling JITLink in more platforms in clang-repl with more complicated
c++ test cases. They would serve as nice real-world in-tree integration test
cases for new JIT infrastructure.

e Better validation of dllexported symbols. Currently, there is no check if
symbols are dllexported when creating jump thunks or dllimport GOT entry.
This causes incorrect creation of jump thunk to data symbol when the
codegen assumed the library data symbol to be inside static library without
any warning for example.

e ORC out-of-process executor support in windows. ORC supports remotely
transferring JIT'd code to executor process which can even be inside other
computer in network. All groundworks in JIT linker stack is done for
windows. We only need to implement a windows remote
ExecutionProcessControl class using windows RFC API.

My learnings

I can't list every lesson I leanred through this project because they are so many.
This project has been the most worthwhile and challening software engineering
project I have done. Especially, the code I have written for ORC runtime support
for COFF/X86_64 has been one of the proudest pieces of work in my life since I
started coding 10 years ago.

e I genuinely learned the importance of communication in software
engineering. I was surprised how much of time can be saved early on by
discussing a high-level design before going on to code and experiment the
idea.

e I witnessed how setting short-term goals step by step can boost my
productivity.

¢ I now completly grasp what's going on inside linker and object files. I'm
pretty confident that I can build a linker for any object format from scratch if
I'm given enough information and time.

e Ilearned how to work in an enormously large scale codebase like that of
LLVM. It's still a bit of annoyance when it occasionally recompiles whole
repository which takes about 2 to 3 hours, but I can bear with it.

Note of thanks

Thanks you so much for all the oppertunities and supports Lang, Vassil and
Stefan!! It truly has been a wonderful and life-changing months for me.



	GSOC 2022 final report
	Basic Info
	About LLVM
	Project description
	Approach and workflow
	Goals
	Landed patches
	ELF/AARCH64
	COFF/X86_64
	clang-repl

	Communication and Work Management
	Future scope
	TODOs
	Future (long term) goals

	My learnings
	Note of thanks


