
General comments above the CLING documentation project:

THE CLING WEBPAGE:
The first evident issue is that there is not one dedicated website/page, but rather a multitude of blogs/links/portal
web/conference/YouTube videos of conferences, all providing precious information, but in an unorganized way, and written in
different styles. As an example, the following links: https://root.cern/blog/cling-in-llvm/ and
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/ provide a discoursive inshights about the scope of the CLING
project and the development history. They also provide some practical info about how to use cling and pieces of code. In my
opinion, nobody who actually wants to install and use CLING has the patience to extract practical info from a blog, but rather
expects to find those information in the CLING web page, or on the CLING github’s page. At this point, the most organized
CLING webpage is the following: https://root.cern/cling/#download, which nevertheless lacks details and structure.

At first, we might think to work to extend and improve the https://root.cern/cling/#download page, creating a new Overview
section where to insert links to the blog descriptive pages. Nevertheless, the final goal should be to eliminate those links so that
the reader will find everything on the CLING webpage only. A brief description of the purpose of CLING should be included in
the Overview, more details about CLING’s functionality should be found in the User's Guide. A first draft can be provided by the
Technical Writer (TW) by gathering all the blogs/videos existing, extracting the useful information, and rewriting them in a
consistent, coherent form. The CLING developer’s team should then provide feedback on this draft so that the TW can improve
it and finalize it with updated information.
note: since one of the purposes of the CLING team is to make CLING independent from ROOT, perhaps a new dedicated
webpage should be created ex novo rather than working on the root.cern/cling.

AUDIENCE:
The second issue I want to point out might to give insights about how to get from N to N+100 new users. What kind of audience
could be interested in CLING? I do understand that CLING originates from ROOT, and was developed having the scientists
from CERN as user target, who usually work with large amounts of data previously collected. In this case, compiling
interactively might give the advantage of speeding up the process. Would CLING be useful for users whose code is dependent
on real time data (eg. generated by hardware components?). Can we extract user case examples (i.e. pieces of code) for
different audiences, so that people get a solid idea about why they should use CLING? Define a better user case, dividing
examples for different areas (physicists from CERN/data science/general?). Defining the audience will also allow us to define
the structure of the CLING webpage. For instance, an audience of scientists from CERN, who is familiar with ROOT, might be
interested at a chronological history of CLING’s development, since it would allow this audience to grasp the reason why CLING
was developed and what advantages it has over the previous versions of C++ interpreters. It should look something like this
(forgive me if the descriptions aren’t correct, it’s just a draft):

a. 19XX → ROOT, a software package based on XX was developed to help scientists from CERN to analyze large amounts of data.
b. 19XX → LLVM, a set of compilers and toolchain technologies, was developed by XX in order to XX
c. 19XX → CLANG, a compiler front end for C/C++/etc was developed by XX. CLANG allows users to XX.
d. 19XX→ CINT, a C++ interpreter for ROOT, was developed
e. 2014 → CLING, an interactive interpreter for C++ was developed by XX as part of the ROOT project, with the intention to use XX .
f. 20XX → we decided to move most of CLING onto the LLVM platform. This strategy has the following advantages: XX, XX, XX. Our vision is to

further XXXX.

Nevertheless, this information would be irrelevant to an audience of pure software developers with no insights and no
interest at the physics behind CLING development. For this audience, I would rather focus on the description of the reason why
they should consider using CLING, and provide them with a multitude of practical examples (i.e. pieces of codes) that they can
easily copy/paste into their terminal to get a real grasp of the software’s potential.

INSTALLING AND EXECUTING:
Browsing through the project’s issue page https://github.com/root-project/cling/issues?page=1&q=is%3Aissue+is%3Aopen I
noticed that many potential users are having troubles at installing or executing CLING. A priority goal, and the first step to
accomplish, should be the following: how to get to the point that everybody who wants to install CLING can do it easily
and in a short time. The installation section should therefore always be updated, dependencies should be explicitly indicated,
new releases/modifications should be included, and a step-by-step installation guide should be provided. Somebody from the
team should be nominated as reference and should take care of maintaining this section updated.

Tutorials, use case examples should be in a form that the user can use as such and understand how to proceed in practice. I
see tutorials scattered on many pages, such as:
https://root.cern/cling/#download,
https://notebooks.gesis.org/binder/jupyter/user/quantstack-xeus-cling-be48kuw4/notebooks/notebooks/xcpp.ipynb,
https://blog.llvm.org/posts/2020-12-21-interactive-cpp-for-data-science/,
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/,
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/.
The tutorials should be collected in one document, reviewed by the team, and then re-arranged in the CLING webpage, making
sure that code examples are organized from simple to complex cases. The code should be easy to copy-paste into the user’s
terminal. The process of rewriting them should follow a logic hierarchy: showing advanced features only when simple features

https://root.cern/blog/cling-in-llvm/
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/
https://root.cern/cling/#download
https://root.cern/cling/#download
https://github.com/root-project/cling/issues?page=1&q=is%3Aissue+is%3Aopen
https://root.cern/cling/#download
https://notebooks.gesis.org/binder/jupyter/user/quantstack-xeus-cling-be48kuw4/notebooks/notebooks/xcpp.ipynb
https://blog.llvm.org/posts/2020-12-21-interactive-cpp-for-data-science/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/


have been already described. A problem specific to the CLING project is that the software aims at different kinds of audiences
who are therefore interested in different kinds of examples. Would it be useful to keep audiences separate into categories,
providing practical examples separately, or it would be dispersive and generate chaos? This should be discussed with the team.

This is, in my opinion, a draft of the essential feature that the CLING webpage/GitHub page should provide:
note: the reference documentation is now empty, but this same draft, or an improved version of it, might be used later in order
to organize the existing documentation into logical classes.

NAME OF THE
SECTION

CONTENT OF THE
SECTION

REFERENCE
DOCUMENTATION

COMMENTS PRIORITY (from
1-most important to
3-least important)

Overview
1. Overview of
CLING’s functionality
It should begin with
something like:
CLING is an
interactive C++
interpreter. CLING
enables you to …
2. History of CLING
development (if we
decide to insert it)

https://blog.llvm.org/p
osts/2020-11-30-inter
active-cpp-with-cling/

https://blog.llvm.org/p
osts/2021-03-25-cling
-beyond-just-interpreti
ng-cpp/

Use visuals rather
than descriptive
language. Videos or
screenshots. When
visuals are used: text
on the left and graphic
on the right, both
explaining the same
concept

2

Release notes It very briefly
describes the last
release updates,
specific changes
included in CLING. It
should link to a
changelog section for
more detailed info

A member from the
team should be in
charge of maintaining
it constantly updated

1

Installation 1.Introduction→desc
ribes the purpose of
this document

2.Pre-installation
and dependencies→
explains what
hardware and
software are needed
for your product to
function properly.
Example: CLING can
be installed on
CONDA or on Docker
Hub. If you use
CONDA, you can
install with: → there
should be one line
command that can be
easily copied/pasted.

3.Step-by-step
installation
procedure

4. Troubleshooting→
describes how to fix
common issues
encountered during
installation

5.Uninstalling
procedures

Style should be
structured writing:
heading, small blocks,
breaking down
complex instructions
into simple,
one-concept/compone
nt instructions
organized into
numbered lists. It
helps the reader to
stay more
concentrated on the
procedure

1

Starting CLING After installation, what
do I need to execute
to actually start cling
(e.g. write cling in
terminal and maybe a
few simple code
examples)

It should be kept as
simple as possible

1

https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/


User’s Guide Explains what is
CLING, contains
examples and
tutorials of different
use cases

Organized logically
from simple (Hello
World) to complex.
Eventually, organized
by category (CERN
related, data science,
etc). All of the codes
should be easy to
copy/paste, a quality
check should be
made to make sure
that they are
functioning. All of
them should be
introduced by a
description of the
code purpose,
generated output,
eventually with the aid
of visuals if useful.
Better to start with a
few, working
examples rather than
having many
chaoticones.

2

Reporting an issue Gives the user
possibility to report
problems with the
software (bugs,
installation problems)

The TW will discuss
the following with the
team: where should
the user report an
issue? GitHub? Is
there any specific
template to report an
issue?
https://docs.github.co
m/en/communities/usi
ng-templates-to-enco
urage-useful-issues-a
nd-pull-requests/confi
guring-issue-template
s-for-your-repository
and
https://marker.io/blog/
bug-report-template
could be used as a
refererence

1

Developer Guide 1.Code style
(example Google
style code, etc)
2.Code of conduct
3.Special
dependencies
4.Pull request
template

Having a developer
guide it’s in my
opinion essential in
order to get
experienced users to
contribute to the
project. The code of
conduct should be
detailed and well
defined.
Nevertheless, it is
less priority than the
User’s Guide

3

CLING Changelog A list of chronological
order of all the
changes in the
software (es.
added/improved/remo
ved features)

One team’s member
in charge of this
section

2

Timeline:
note: TW=Technical Writer // Team=the team of CLING’s developers

FROM-TO COMMENTS

Before starting:
Discussion of this draft with the team,
the TW will receive comments from the
team so that the plan can be improved.
A new, updated plan will be then
generated by the TW.

May 3-9 (this week) The team should help the TW to define
the priorities.

“State of the art”:
Reading of all existing material,
extraction of information from all the
sources and classification of those into
logical classes such as: info about the

May 9-20 This part involves a lot of solitary
reading from the technical writer, but
also dialogue with the team when
some parts are not clear. In particular,
the team should help the TW to

https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://marker.io/blog/bug-report-template
https://marker.io/blog/bug-report-template


history of cling, cling purpose, tutorials,
installation guide, user guide.

understand when an information is out
of date and therefore should be
eliminated, and where new material
should be generated.

Plan and analyze:
1.Assessment of Audience
3. Define Team and roles

May 21-23 Roles should be defined now as much
as possible (who, from the team, will
be in charge of improving the
installation manual, who will work on
the tutorials, etc)

Sketch of CLING manual:
1.Decide the outline
2. Organize rationally
3.Offer info about the SW

May 23-June 30 This segment is the main part and
must provide detailed and concrete
information on how to use CLING. It
should begin with the basic setup
required, then move further to
numbered and logical steps that define
how the app should be utilized.

Write a readable manual July 1O - October 15 Priority should be given to existing
users (i.e. by generating an installation
and how-to-start guide that are reliable
and updated).

Following this, tutorials should be
included starting from easy to more
advanced.

The writing standard should aim at:
1.Explain with graphics and visuals
together with short text
2.Use numeric lists
3.Provide instances:code examples
4.Write in active voice and simple
vocabulary
5.Keep it brief

Test the new CLING webpage October 15 - October 30 Assigning to a group of testers who are
not acquainted with the SW might be a
strategy: can they install CLING easily?
Do they understand CLING’s purpose?
Can they code using CLING easily?
Perhaps, a first test should be done
after the Installation and Starting with
CLING sections are written.

Keep CLING updated From October on This should be the goal of the CLING
team after the SoD ends. The team
should define who is in charge of
upgrading info about SW modification,
answering to reported issues, etc.

Summarize of the identified steps:
1) Review of the existing documentation, identifying what should be moved in each section
2) Writing of the Release Notes, Installation, Starting CLING, Reporting and Issue sections. This way, we make sure

that everybody who already knows CLING but had issue at installing it can now install and execute CLING
3) Writing of the Overview, User’s Guide, Changelog section
4) Writing of the Developer’s Guide (optional, I am not sure that there will be enough time but it can be at least drafted)


