

Advanced symbol resolution and

reoptimization for clang-repl

Name: Sahil Patidar
Email: sahilpatidar60@gmail.com
Github: https://github.com/SahilPatidar
Mentors:

● Vassil Vassilev
Size of Project: Large

1. Project Description:
Clang-REPL is an incremental compiler for C and C++ that extends the traditional static
compilation model, enabling dynamic execution while retaining the performance benefits
of C and C++. It allows interactive programming similar to Python but with the power of
C and C++.

Currently, in Clang-REPL, users must manually load dynamic libraries when external
symbols are required. This project aims to enhance Clang-REPL by implementing an
advanced symbol resolution mechanism that automatically loads the necessary
dynamic libraries when external symbols cannot be resolved.

Additionally, the project will introduce runtime profile-guided optimizations (PGOs) to
re-optimize executable binaries dynamically based on profiling data, ultimately
improving performance.

https://discourse.llvm.org/t/gsoc2025-advanced-symbol-resolution-and-reoptimization-for-clang-repl/84624
https://discourse.llvm.org/t/gsoc2025-advanced-symbol-resolution-and-reoptimization-for-clang-repl/84624
https://discourse.llvm.org/t/gsoc2025-advanced-symbol-resolution-and-reoptimization-for-clang-repl/84624
mailto:sahilpatidar60@gmail.com
https://github.com/SahilPatidar
https://clang.llvm.org/docs/ClangRepl.html

This project will enhance Clang-REPL’s usability and performance, making it more
efficient for interactive and dynamic C/C++ execution.

Project Objective:

● Implement an Auto-Load mechanism for Clang-REPL to automatically load
missing dynamic libraries when resolving external symbols.

● Introduce Re-Optimization support to enhance runtime performance using
Profile-Guided Optimizations (PGOs).

Expected Outcomes:
● A robust Auto-Loading mechanism for seamless symbol resolution in

Clang-REPL.
● Re-Optimization support leveraging runtime profiling to improve execution

performance.

Technical Skills: C/C++, LLDB, Familiar with LLVM ORC-JIT, LLVM IR, Git

2. Implementation Plan

2.1. Roadmap

Since out-of-process execution environments introduce the most overhead, optimizing
them first ensures that the approach will also work efficiently for in-process execution.
This project enhances symbol lookups in ORC-JIT by integrating Bloom filters,
reducing redundant RPC calls, and improving execution efficiency in both per-library
and auto-loading modes.

Phase 1: Controller Side

On the controller side, each dynamic library has its own orc::DefinitionGenerator
attached to a JITDylib, which is responsible for resolving definitions for unresolved
symbols in the dylib. To enable auto-loading, we need to either extend or create a new
DefinitionGenerator specifically designed for auto-loading use cases. Additionally, to

support efficient symbol lookup, we need to integrate Bloom filter support by introducing
a new FilterListener APIthat can work alongside the DefinitionGenerator. This outlines
the main work that needs to be done.

● Auto-Loading Mechanism
○ Integrate auto-loading with DefinitionGenerator to avoid redundant

complexity.
○ Introduce a unique handle for auto-loading recognition in lookup APIs.

● Bloom Filter API & Request Strategy
○ Develop a FilterListener API that integrates with DefinitionGenerator

and Lookup API to manage filter requests.
○ Define a request strategy based on lookup mode.
○ Ensure seamless compatibility with ORC’s search mechanisms.

Phase 2: Executor Side

On the executor side, symbol lookup is handled by
orc::SimpleExecutorDylibManager, which is responsible for resolving
unresolved symbols in a dylib using its dynamic library handle. To support auto-loading,
we need to either enable or create a new ExecutorResolver API that can handle
auto-loading seamlessly. Additionally, we need to design a FilterBuilder API that can
build Bloom filters for both lookup modes — per-library and global-library filtering—
and efficiently report them to the controller. This will be an important part of making
lookups faster and more scalable.

1. Implement Auto-Loading Mechanism

● Dynamically scan shared libraries to collect and store symbol information.
● Enhance Orc’s symbol resolution to track and register dynamically loaded

libraries.
● Manage LoadedLibraries set to optimize future lookups on the executor side.

2. Develop Bloom Filter API and Filter Construction

● Design a Bloom Filter API that allows the executor to report filters to the
controller, supporting both per-dylib filters and a global Bloom filter.

● Ensure the design routes filter updates to the corresponding FilterListener
associated with each DefinitionGenerator.

● Construct per-library and global Bloom filters based on the request strategy.
● Build global filters that aggregate symbols across multiple libraries.
● Optimize filter updates using a combination of on-demand and proactive

approaches.

2.2. Controller Side

Bloom Filter API
To optimize symbol lookups in both auto-loading and per-dylib modes, we need a
FilterListener API in the controller. This API will handle filter requests from both
modes and send requests to build filters. To build a filter, we must pass a dylib handle
to identify which specific dylib's filter is required, as well as an identifier for the global
filter.

Key Components of Bloom Filter API
1. Filter Requests:

- The controller must be able to request a filter for:
- A specific dynamic library (per-dylib mode) → Requires the

dylib handle for identification.
- Global filtering (auto-loading mode) → Requires identification for

a global filter across all libraries.
2. Challenges in Request Timing:

Determining the optimal time to request a filter from the executor depends on
how the FilterBuilder manages filter creation.

In per-dylib mode, the approach is more straightforward: a filter should be requested
immediately when searching a single library. Without using a filter in this mode,
resolving symbols would require N separate RPC calls for N libraries, leading to
significant inefficiency. Promptly requesting the filter avoids this overhead and
streamlines symbol resolution.

Global Filter in Auto-Loading Mode:
Requesting a global filter in auto-loading mode is more complex because it must
process a large set of library symbols. There are two possible strategies to handle this.

The first is preemptive filter creation, where all libraries are scanned at initialization,
symbols are collected, and a request is sent to the executor to build the filter in
advance. This approach ensures fast symbol lookups during execution but incurs high

upfront costs. To improve this, an asynchronous approach could be
considered—scanning libraries in the background without blocking execution.

The second strategy is on-demand filter creation, where the filter is requested only
when the executor fails to resolve a symbol in auto-loading mode. This failure
indicates that all libraries have already been searched, making it the right time to
build and return a global filter for future lookups. Since only one RPC call is made per
symbol lookup in auto-loading mode, this method ensures that the filter is built only
when absolutely necessary, thereby minimizing unnecessary RPC communication.

Possible Request Strategy Based on Mode
- Per-Dylib Mode:

- The filter is needed from the beginning, as each lookup would otherwise
require multiple RPC calls.

- Auto-Loading Mode:
- The filter is only required after an unresolved lookup since only one

RPC call is made per lookup.

By integrating these approaches, the Bloom Filter API will enhance performance by
reducing redundant RPC calls and ensuring efficient symbol resolution.

Auto-Load calling mechanism:

Enabling Auto-Loading with a Unique Handler
To support Auto-Loading, the mechanism must integrate smoothly with the existing
DefinitionGenerator-based approach, rather than introducing a completely new
search method.

Key Challenges:

- DefinitionGenerators handle single-library lookups, but Auto-Loading must
efficiently manage a large set of libraries.

- Creating a new DefinitionGenerator for Auto-Loading would add unnecessary
complexity.

Proposed Solution by Lang Hames:
 Introduce a Unique Handle for Auto-Loading

- Define a dedicated unique handle distinct from standard dynamic library
handles.

- This handle will be recognized by Search and Lookup APIs to trigger
Auto-Loading.

2.3. Executor Side

Auto-Loading Mechanism
The Auto-Loading mechanism dynamically loads shared libraries when the system
encounters unresolved symbols during execution. This enhances usability by
automating symbol resolution without requiring manual intervention.

Current Symbol Resolution in Clang-REPL (ORC-JIT)
Clang-REPL leverages ORC-JIT for incremental compilation and execution. Symbol
resolution in JITDylib is managed by DefinitionGenerators, where:

- Each loaded library has its own DefinitionGenerator.
- DefinitionGenerators interact with DylibManager API to:

- Load libraries.
- Retrieve dynamic library (dylib) handles.
- Pass the handle to the DylibManager API for symbol resolution.

Cling’s Auto-Loading Search Mechanism Approach
Our approach will leverage Cling’s fallback search mechanism for efficient symbol
resolution.

How Cling’s Auto-Load Search Works

1. Library Scanning & Registration
Cling starts by scanning all available libraries and registering them into a
container. This gives it a list of libraries it can search through when looking for
symbols.

2. Symbol Lookup Process
When Cling needs to find a symbol, it goes through the registered library
information to check if the symbol exists. As it searches, it creates Bloom filters
on-the-fly for each library. These filters help speed up future lookups by quickly
telling whether a library might contain a symbol or not.

3. Efficient Caching with QueriedLibraries
If Cling finds the symbol, it returns the path to the library and saves the library

info into a separate container called QueriedLibraries. The next time it needs to
find a symbol, it checks QueriedLibraries first, so it doesn’t waste time
searching the same libraries again. It also removes any libraries that have
already been loaded from the main scanned container, making future searches
even faster.

To improve efficiency and better support global symbol lookups, we introduce a few
refinements. First, we maintain a separate LoadedLibraries Info set for libraries that
have been queried and successfully loaded. This allows us to use individual Bloom
filters for faster lookups within already loaded libraries. It also enables the construction
of a global Bloom filter that includes symbols from both LoadedLibraries and
unloaded scanned libraries, covering both system and user libraries.

Auto-Loading Process

The auto-loading process begins with an initial lookup where the system searches for
the symbol across all currently loaded dynamic libraries. If the symbol is not found, a
fallback mechanism triggers Auto-Loading. At this point, the system scans the available
search paths for libraries that have not yet been loaded, including standard system
library paths like /usr/lib and /lib, as well as any user-defined library directories.
Once discovered, these dynamic libraries are registered into a container for efficient
future access. The system then iterates through the registered libraries, checking each
one for the required symbol. If the symbol is found, the corresponding library is loaded
dynamically, the symbol is retrieved, and the library is added to the LoadedLibraries
set. This not only speeds up future lookups but also contribute to the construction of the
global Bloom filter. for even more efficient symbol resolution going forward.

BloomFilter API

Need for Bloom Filter in Symbol Lookup APIs
In an out-of-process execution environment, resolving unresolved symbols in dynamic
libraries can quickly become inefficient, especially in per-library lookup mode. Here,
Each ORC::DefinitionGenerator attached to a JITDylib must make an RPC call
for symbol lookup. If there are N loaded libraries and the required symbol happens to be
in the (N-1)th library, the system will end up making N-1 RPC calls before successfully
resolving it. This overhead stems from the fact that there is currently no way to predict
whether a symbol exists in a particular library without first attempting a lookup.

Similarly, in auto-loading (global-library lookup) mode, a single RPC call is made, but
the system must search through all libraries. If the symbol is missing in all libraries, this
results in unnecessary overhead, significantly impacting runtime performance.

To address these issues, we propose introducing a Bloom filter into both auto-loading
mode and single-library lookup mode. The goal is to provide a lightweight,
probabilistic way to quickly check if a symbol might exist in a library before making a
costly lookup attempt. The main challenges are designing a solution that works
efficiently across both lookup modes, supports both in-process and out-of-process
execution environments, and figures out the right timing and strategy for building Bloom
filters at both the global and per-library levels.

Design Considerations

1. When to Create and Request the Bloom Filter
The main challenge is determining when to construct the Bloom filter and when the
controller should request it from the executor.

- Per-library Bloom filter:
- Straightforward to implement but must support both execution modes.

- Global Bloom filter (Auto-loading mode):
- Needs to aggregate symbols from multiple libraries.
- Can be expensive when dealing with a large number of libraries.
- Requires a mechanism to efficiently collect and process symbols.

FilterBuilder API
The FilterBuilder API is responsible for processing filter requests from the controller
and constructing Bloom filters for both per-dylib and global-dylib (auto-loading
mode) lookups.

The controller may pass a dylib handle to indicate whether a filter is needed for a
specific library (per-dylib) or for all libraries (global-dylib).

Key Responsibilities
1. Per-Dylib Mode:

- Maintain a mapping of loaded dylib handles to library information.
- Use this mapping to efficiently build a filter for individual libraries when

requested.

2. Global-Dylib Mode (Auto-Loading):

- This is more complex as it involves managing all scanned and loaded
libraries.

- Leverage the DynamicLoader API used in the auto-loading mechanism
to track library metadata.

- Ensure that the filter can be efficiently built while minimizing performance
overhead.

By integrating with the existing dynamic loading infrastructure, the FilterBuilder API
will enable efficient symbol lookup optimizations.

Approaches for Building the Bloom Filter
1. After a Failed Symbol Resolution:

- If symbol resolution fails and control returns to the controller, it indicates

that all libraries have been searched.
- At this point, we can request the executor to build the global Bloom filter,

ensuring that subsequent lookups are optimized.

2. On-Demand Request from Controller:

- The controller can request the Bloom filter from the executor.
- If the filter is not yet available, the executor adds the request to a

pending queue.
- If a lookup failure occurs, the system would have already collected all

symbols, making it an ideal time to construct and return the filter.

3. Proactively After Library Scanning:

- During initialization, libraries are scanned, and their metadata is collected.
- We iterate over library information (initially containing only paths) and

extract symbols into a global symbol set.
- This symbol set is then used to construct the global Bloom filter,

reducing overhead during actual lookups.

Integrating Bloom filters in symbol lookup APIs will reduce unnecessary RPC calls,
improving lookup efficiency and runtime performance. The key to success lies in
carefully balancing the cost of constructing the filter with the performance gains it
provides. The final design should support both per-library and global filtering strategies
while being adaptable for both in-process and out-of-process execution environments.

2.4. Re-Optimization in Clang-Repl

Re-optimization is a technique in ORC-JIT that allows optimizing hot functions at
runtime based on profiling data, producing a more optimized version of the function.
ORC already provides this capability through the ReOptimizeLayer, but Clang-Repl
currently lacks support for it. Our goal is to integrate Re-Optimization into Clang-Repl
to leverage its performance benefits.

Tasks to be Completed

● Add --re-opt flag: Introduce a command-line option in clang-repl to enable
re-optimization.

● Implement ReOptFunc: Define a custom ReOpt function that will be passed to
ReOptimizeLayer. This function will use runtime profiling data to apply targeted
optimizations and LLVM passes for improving performance.

● Utilize RedirectableManager: We can initially use JITLinkRedirectableManager for
handling function redirection during re-optimization.

This integration will enable Clang-Repl to dynamically re-optimize frequently executed
functions, improving execution efficiency over time.

3. Timeline: The expected timeline of the project is as follows:

 Time Task Deliverable

2 June –
8 June

● Implement the Controller side API for
auto-loading.

● Introduce a unique handle for
managing auto-loading.

● Implement new

ExecutorResolutionGe
nerator
Implementation.

DefinitionGenerator for
auto-loading

9 June –
22 June

● Implement the RemoteResolver API
for executor-side auto-loading.

● Add Auto-Loading Search, inspired by
Cling’s approach.

● Implement library scanning to extract
symbol information from dynamic
libraries.

● Develop a caching mechanism to
store previously queried libraries for
future lookups.

● Introduce a LoadedLibraries set to
facilitate global Bloom filter
construction.

● Efficiently aggregate symbols to
construct a global Bloom filterfor
auto-loading.

● Begin testing symbol collection
efficiency.

RemoteResolver
implementation.

23 June
– 6 July

● Develop the FilterListener API
in the controller to handle filter
requests.

● Implement the FilterBuilder API for
constructing per-dylib and global
Bloom filters.

● Integrate Bloom filtering into the
Lookup API for efficient symbol
resolution.

● Enable the executor to transmit
Bloom filters to the controller for
future lookups.

● Optimize lookup efficiency:
● Single-library search: Avoid

redundant RPC calls if a
symbol is absent.

● Auto-loading mode: Minimize
exhaustive searches across all
libraries.

● Conduct unit tests to validate API
functionality.

BloomFilter API and initial
integration.

7 July –
13 July

● Complete integration of the Bloom
Filter mechanism.

● Resolve any issues identified during
initial testing.

Fully integrated
BloomFilter API.

14 July –
20 July

● Begin implementing re-optimization
support in clang-repl.

● Introduce the ReOptimizeLayer in
LLJIT to support dynamic
re-optimization.

 —

21 July –
27 July

● Implement command-line support
for re-optimization, e.g., --re-opt in
clang-repl.

● Develop a handler for the --re-opt
flag to configure LLJIT accordingly.

● Implement custom ReOptFunc,
which will be passed to the
ReOptimizeLayer.

 —

28 July –
3 Aug

● Finalize the implementation of
re-optimization support in
clang-repl.

● Address any integration issues found
during testing.

Fully functional
re-optimization support in
clang-repl.

4 Aug –
17 Aug

● Conduct testing and benchmarking
of the new auto-loading and Bloom
Filter-based symbol resolution.

● Compare performance against
traditional symbol resolution methods
on various code samples.

Benchmark results
showcasing performance
improvements.

18 Aug –
25 Aug

● Document the project
implementation, API usage, and
benefits.

● Write a detailed blog post explaining
the work, design choices, and
performance improvements.

Project documentation and
blog post.

4. About me:

● Background and Motivation: I am interested in compiler development and
system programming. I have contributed to the LLVM project, mainly working on
optimization passes and small improvements related to ORC-JIT. Recently, I’ve
been exploring Clang-REPL and ORC-JIT in more depth. I’m still learning, but I
enjoy reading the codebase, experimenting with small patches, and
understanding how different parts fit together.

I am applying to GSoC because I want to learn by working on a real project. The
project on ORC auto-loading seems like a great opportunity for me to dive deeper
into runtime symbol loading and JIT internals.

Through this experience, I hope to improve my coding, debugging, and
open-source contribution skills.

● Open Source Experience: I already have hands-on experience with the LLVM
compiler infrastructure, having actively participated in the project by submitting
several patches. These patches demonstrate my understanding of LLVM's
codebase and my ability to contribute meaningful improvements.

Specific Contributions:
https://github.com/llvm/llvm-project/pulls/SahilPatidar

5. Availability
I have no prior commitments this summer, so I will be available full-time.

https://github.com/llvm/llvm-project/pulls/SahilPatidar

	
	
	Advanced symbol resolution and reoptimization for clang-repl
	1. Project Description:
	Expected Outcomes:
	2. Implementation Plan
	
	2.1. Roadmap
	Phase 1: Controller Side
	Phase 2: Executor Side
	1. Implement Auto-Loading Mechanism
	2. Develop Bloom Filter API and Filter Construction

	2.2. Controller Side
	Bloom Filter API
	Key Components of Bloom Filter API
	Possible Request Strategy Based on Mode
	Auto-Load calling mechanism:
	Enabling Auto-Loading with a Unique Handler

	2.3. Executor Side
	Auto-Loading Mechanism
	Current Symbol Resolution in Clang-REPL (ORC-JIT)
	Cling’s Auto-Loading Search Mechanism Approach
	How Cling’s Auto-Load Search Works
	Auto-Loading Process
	BloomFilter API
	Need for Bloom Filter in Symbol Lookup APIs
	Design Considerations
	1. When to Create and Request the Bloom Filter

	FilterBuilder API
	Key Responsibilities
	Approaches for Building the Bloom Filter

	
	2.4. Re-Optimization in Clang-Repl
	Tasks to be Completed

	3. Timeline: The expected timeline of the project is as follows:

	4. About me:
	I am applying to GSoC because I want to learn by working on a real project. The project on ORC auto-loading seems like a great opportunity for me to dive deeper into runtime symbol loading and JIT internals.
	Through this experience, I hope to improve my coding, debugging, and open-source contribution skills.
	5. Availability

