
Enable CUDA compilation on
Cppyy-Numba generated IR
CERN GSoC 2024 Proposal

Mentors : Vassil Vassilev <Vassil.Vassilev@cern.ch>

Aaron Jomy <aaron.jomy@cern.ch>

Wim Lavrijsen <wlavrijsen@lbl.gov>

Jonas Rembser <jonas.rembser@cern.ch>

Applicant : Riya Bisht <manasi.riya2003@gmail.com>

Contact Information
GitHub : chococandy32

Website : riyabisht.com

Twitter : chococandy63

Address : Graphic Era University, Dehradun, India (GMT +5:30)

mailto:Vassil.Vassilev@cern.ch
mailto:aaron.jomy@cern.ch
mailto:wlavrijsen@lbl.gov
mailto:jonas.rembser@cern.ch
mailto:manasi.riya2003@gmail.com
https://github.com/chococandy63
http://riyabisht.com
https://twitter.com/chococandy63

About Me
My name is Riya Bisht. I am a third-year Computer Science & Engineering

student at Graphic Era University, Dehradun, India.

I selected this project because I am working on a research project, Tiles

Research[https://github.com/tilesresearch], which is trying to create a smarter

and a faster way of working with Compute at the local/client side. We are

incorporating emerging technologies like web assembly, webGPU and

webTransport. Currently, the project is in its early stages where we are trying to

do as many experiments as we can using the existing tools and technologies to

build a toy project/demo. In order to work on this dream, I want to gain a deep

understanding of the GPGPUs and compiler internals including the topics like

automatic parallelization and single source kernels. Contributing to CUDA/LLVM

IR will help me to get some hands-on experience with Compiler Tools &

Technologies.

Why Me?
I am a fast learner and I have a strong motivation to complete this project. The

experience I will gain from the process and outcomes of this program by

contributing to compiler internals and open source collaboration will help me in

my personal research project. My love for Low-Level systems started when I

became a member of the Handmade community that aims to make low-level tech

fun for everyone where we share our research

[https://handmade.network/p/515/research-compilers/].

Some of my initiatives in Compiler space:

https://github.com/chococandy63/Interpreters-Compilers101

https://riyabisht.com/blog/toycompiler01/

https://nixpienotes.notion.site/Everything-About-WASM-3122aadd248a4d06afd42

9719c6861a8

https://github.com/chococandy63/hacks-core

https://github.com/tilesresearch
https://handmade.network/p/515/research-compilers/
https://github.com/chococandy63/Interpreters-Compilers101
https://riyabisht.com/blog/toycompiler01/
https://nixpienotes.notion.site/Everything-About-WASM-3122aadd248a4d06afd429719c6861a8
https://nixpienotes.notion.site/Everything-About-WASM-3122aadd248a4d06afd429719c6861a8
https://github.com/chococandy63/hacks-core

Past Open-Source Experience
My open source journey started when I shifted to Linux Operating System

full-time. I enjoyed building my linux-kernel from scratch, and tried to do testing

for linux distributions like EndeavourOS, and Fedora. I was active in the KDE

community where I solved some user-interfacing bugs, contributed to the Unikraft

project, got a scholarship by The Linux Foundation in Women in Open Source

track and another scholarship to attend KubeCon Chicago 2023 in-person.

Time Commitment
During the GSOC period, I will be working on the project full-time. I am not

having any University classes or any part-time jobs/commitments from

May-August so I will be able to commit a minimum 7-8 hours/day (minimum

49-52 hours/week), which can be extended if required. I have no major

commitment other than GSoC for the following duration so I would be able to

focus more on contributing to the project. I have also submitted the proposal for

two other projects, one under the Compilers Research Group and another under

the Unikraft organization.

Project Information
Title : Enable CUDA compilation on Cppyy-Numba generated IR

Duration : 350 hours

Time : 12 Weeks

Mentor availability: June-October

Difficulty level : Medium

Technologies : Python, C/C++, CUDA, LLVM

Topics : Machine Learning, Big Data, Algorithmics,

Particle Physics, Performance Optimisation

Abstract
Cppyy is an automatic, run-time, Python-C++ binding generator, for calling C++

from Python and Python from C++. Initial support has been added that allows

Cppyy to hook into the high-performance Python compiler, Numba which

compiles looped code containing C++ objects/methods/functions defined via

Cppyy into fast machine code. The project aims to enhance Cppyy, by enabling

CUDA compilation on Numba-generated intermediate representation (IR). This

integration will allow seamless utilization of CUDA paradigms in Python without

compromising performance.

Objectives

1. Support for Cppyy-Defined CUDA Code: Implement support for

declaration and parsing of CUDA code defined in Cppyy within the Numba

extension.

2. CUDA Compilation Mechanism: Design and develop a mechanism for

CUDA compilation and execution within the Cppyy-Numba environment.

3. Testing and Documentation: Prepare comprehensive tests to ensure

functionality and robustness. Create detailed documentation for users and

developers.

Pre-GSoC: Evaluation Tasks

My primary OS is Ubuntu 22.04.2 LTS with GNOME and Bash. We created a
function get_CUDA_info() that uses the following CUDA APIs:

- “cudaRuntimeGetVersion(int* version)” to obtain the version of CUDA
- “cudaDeviceCount(int* count) ” this function returns the number of

CUDA-capable devices available.
- “cudaGetDeviceProperties(cudaDeviceProp* prop, int device)” this function

returns the properties of a CUDA device to structure cudaDeviceProp
pointed by prop for the specified device.

- “cudaDeviceProp” this structure consists of various properties of CUDA
devices like device name, memory clock rate, etc.

Code snippets:

Output:

Reported a build error issue:
https://github.com/wlav/cppyy/issues/223

Bonus Task: Implementation Approach
My understanding of the tasks:
There are three environment variables to control Cling’s handling of CUDA:

- CLING_ENABLE_CUDA (required): set to 1 to enable the CUDA backend.
- CLING_CUDA_PATH (optional): set to the local CUDA installation if not in a

standard location.
- CLING_CUDA_ARCH (optional): set the architecture to target; default is

sm_35 (Clang9 is limited to sm_75)

After enabling CUDA with CLING_ENABLE_CUDA=1 CUDA code can be used
and kernels can be launched from JITed code by in cppyy.cppdef()

https://github.com/wlav/cppyy/issues/223

- Add numba support to cppyy runtime by adding
`import cppyy.numba_ext` in your code explicitly.

- The `@numba.njit` decorator is used to compile the CUDA kernel function
for GPU execution, leveraging Numba's GPU capabilities.

Example: To implement both a host and GPU function that adds two vectors.
import cppyy

import cppyy.numba_ext

import os

import numpy as np

from numba import cuda

import numpy as np

os.environ['CLING_CUDA_ARCH'] = 'sm_86'

cppyy.add_include_path("/usr/local/cuda-12.4/targets/x86_64-linux/include")

cppyy.add_library_path("/usr/local/cuda-12.4/targets/x86_64-linux/lib/")

cppyy.include("iostream")

cppyy.include("cuda_runtime_api.h")

cppyy.include("device_launch_parameters.h")

cppyy.include("vector")

cppyy.include("cuda_runtime.h")

cppyy.load_library("cuda")

cppyy.load_library("cudart")

cppyy.cppdef("""

// Guest function for vector addition

namespace NumbaSupportExample {

template <typename T>

global void guestVectorAdd(T* A, T* B, T* out, int size)

{

int i = threadIdx.x;

if (i < size) {

out[i] = A[i] + B[i];

}

}

}

// Host function for vector addition

void hostVectorAdd(int* a, int* b, int* result, int size) {

for (int i = 0; i < size; ++i) {

result[i] = a[i] + b[i];

}

}

""")

@cuda.jit

def guestVectorAdd(A, B, out, size):

i = cuda.grid(1)

if i < size:

out[i] = A[i] + B[i]

#To copy host->device a numpy array

@numba.njit

def runGuestVectorAdd():

ary = np.arange(10)

d_A= cuda.to_device(ary)

d_B = cuda.to_device(ary)

d_out = cuda.device_array_like(d_A)

nthreads = 256

size = len(d_A)

Define grid and block dimensions

blockspergrid = (A.size + (threadsperblock - 1)) // threadsperblock

nblocks = (len(d_A) // nthreads) + 1

cppy.gbl.guestVectorAdd[nblocks, nthreads](d_A, d_B, d_out,size)

#To copy device->host

result = d_out.copy_to_host()

print("Result:", result)

Project Implementation Approach
Step 1: Identify CUDA-Specific Requirements
Understand the CUDA-specific requirements for compilation to identify the CUDA
specific constructs that are not supported by Cppyy-Numba toolchain, such as
CUDA kernel definitions, memory management for GPU arrays, and launching
CUDA kernels.
Steps to implement the cuda kernel definitions:
1- Define CUDA Kernel Functions:

● Define CUDA kernel functions using the __global__ qualifier in C/C++ to
indicate that the function will run on the GPU.

● Implement the CUDA kernel logic for parallel execution on the GPU.

2- Integrate CUDA Kernel Definitions in numba_ext.py:

● Load the necessary CUDA libraries and headers.

● Define the CUDA kernel functions within the numba_ext.py file using
Cppyy.

3- Utilize Numba for GPU Execution:

● Import the necessary modules from Numba to leverage GPU execution
capabilities.

● Use the @numba.njit decorator to compile the CUDA kernel function for
GPU execution.

Sample Code:

Step 2: Modify the Cppyy-Numba Extension (numba_ext.py)
Modify the Cppyy-Numba extension to add CUDA specific data types, function
calls, memory management operations.
Sample code: To add CUDA specific data types

1- Extending the Type Mapping:
The `_cpp2ir` dictionary maps C++ types to their equivalent types in LLVM IR.
CUDA-specific types that are not currently supported can be added to this
dictionary. For example, CUDA has vector types like `float3` that are not
supported in standard C++ types.

2- Handling CUDA function calls:
The `cpp2ir` function can be extended to add the support for specific CUDA
function calls.

Numba uses the proxies to obtain function pointers and generate the necessary
LLVM IR code to interact with C++ functions and classes. They handle the
conversion of types, accessing data members and methods, and lowering the
code to LLVM IR for interoperability. The key proxies used by Numba to obtain
function pointers are CppFunctionNumbaType and CppClassNumbaType.
They provide the get_pointer() method that retrieves the address of the
corresponding C++ function or method. By using these proxies, Numba can
seamlessly integrate with C++ code and compile it using LLVM, without relying
on Cling for compilation.

Step 3: Modify the CppFunctionNumbaType class to handle CUDA kernel
functions defined in Cppyy. This may involve:

- Detecting if a function is a CUDA kernel based on attributes or naming
conventions. In this example, the CppFunctionNumbaType constructor
checks if the function has a special attribute __cuda_kernel__ or if its
name starts with __cuda_kernel to determine if it is a CUDA kernel.

class CppFunctionNumbaType(nb_types.Callable):

...

def __init__(self, func, is_method=False, is_cuda_kernel=False):

...

self._is_cuda_kernel = is_cuda_kernel

Check if the function has CUDA kernel attributes or naming conventions

if hasattr(func, '__cuda_kernel__') or func.__name__.startswith('__cuda_kernel'):

self._is_cuda_kernel = True

- Generating appropriate Numba CUDA kernel signatures and lowering
code. In this example, if the function is a CUDA kernel, a special CUDA
kernel signature is generated with a void return type. The
lower_cuda_kernel function is registered to handle the lowering of the
CUDA kernel. It declares the kernel function and generates the necessary
CUDA kernel launch code using context.launch_kernel.

class CppFunctionNumbaType(nb_types.Callable):

...

def get_call_type(self, context, args, kwds):

...

if self._is_cuda_kernel:

Generate CUDA kernel signature

cuda_sig = nb_typing.Signature(

return_type=nb_types.void,

args=args,

recvr=None)

Register CUDA kernel lowering

@nb_iutils.lower_builtin(ol, *args)

def lower_cuda_kernel(context, builder, sig, args):

Generate CUDA kernel launch code

kernel_fn = context.declare_function(ol.get_pointer, cuda_sig)

context.launch_kernel(builder, kernel_fn, args)

return cuda_sig

- Handling CUDA-specific function attributes and launch configurations.In
this example, CUDA-specific attributes and launch configurations are
extracted from the function, such as __cuda_grid_dim__,
__cuda_block_dim__, and __cuda_shared_mem__. These attributes
are then used in the lower_cuda_kernel function to configure the
CUDA kernel launch using context.launch_kernel

class CppFunctionNumbaType(nb_types.Callable):

...

def get_call_type(self, context, args, kwds):

...

if self._is_cuda_kernel:

...

Extract CUDA-specific attributes and launch configurations

grid_dim = getattr(self._func, '__cuda_grid_dim__', (1, 1, 1))

block_dim = getattr(self._func, '__cuda_block_dim__', (1, 1, 1))

shared_mem = getattr(self._func, '__cuda_shared_mem__', 0)

Register CUDA kernel lowering with launch configurations

@nb_iutils.lower_builtin(ol, *args)

def lower_cuda_kernel(context, builder, sig, args):

Generate CUDA kernel launch code with launch configurations

kernel_fn = context.declare_function(ol.get_pointer, cuda_sig)

context.launch_kernel(builder, kernel_fn, args,

grid_dim=grid_dim, block_dim=block_dim,

shared_mem=shared_mem)

...

Step 4: Develop comprehensive tests:
Design test cases that cover different use cases and edge cases related to the
CppFunctionNumbaType class modifications.

Compilation Pipeline

Numba Extension:

- The Numba extension for Cppyy is responsible for handling the CUDA
compilation and execution.

- It extends the existing Cppyy-Numba integration to support CUDA.

Detect CUDA Kernels:

- The Numba extension analyzes the exposed C++ CUDA code to identify
CUDA kernel functions.

- It looks for specific attributes or naming conventions to distinguish CUDA
kernels from regular functions.

- The CppFunctionNumbaType class can be modified to detect CUDA
kernels based on these attributes or conventions.

Generate Numba CUDA Kernel Signatures:

- For each detected CUDA kernel, the Numba extension generates a
corresponding Numba CUDA kernel signature.

- The signature includes the kernel function name, argument types, and
return type.

- The get_call_type method of CppFunctionNumbaType can be
extended to generate CUDA kernel signatures.

Generate LLVM IR for CUDA Kernels using llvmlite:

- The Numba extension generates LLVM IR code for the CUDA kernels
using the llvmlite library.

- It translates the C++ CUDA code into equivalent LLVM IR, including device
code and kernel launches.

- The CppFunctionModel and related classes can be modified to generate
appropriate LLVM IR for CUDA kernels using llvmlite.

Output: Enables the support for the following functions:
- Memory Management Functions like `CudaMalloc`, `CudaFree`,

`CudaMemcpy`.
- Device Management Functions like `cudaSetDevice`, `cudaGetDevice`.
- Kernel Launch Functions like `cudaConfigureCall`, `cudaSetupArgument`,

`cudaLaunch`.
- Error Handling Functions like `cudaGetLastError

Timeline
Community Bonding Period

May 1 - May 26 - Engage with the community.

- Establish regular meetings with the mentors.

- Make documentation audits and submit improvements to it where

necessary.

- Write a blog post announcing my about the community on the

compiler-research.org webpage.

- Understanding the project requirements, GPU architecture

Coding period begins

Week 1
27.05.2024-2.06.2024

- Begin extending support for CUDA-specific data types in Cppyy-Numba

(numba_ext.py)

- Define CUDA data types like float3, int3 etc. in numba_ext.py

Deliverables:

- CUDA-specific data types defined in numba_ext.py

Week 2
3.06.2024- 10.06.2024

- Map CUDA-specific data types to equivalent LLVM IR types

- Extend _cpp2ir dictionary for mapping

- Modify cpp2ir function to handle translation of CUDA types to LLVM IR

Deliverables:

- CUDA data types mapped to LLVM IR in _cpp2ir

- cpp2ir function updated to translate CUDA types

Week 3
11.06.2024-18.06.2024

- Modify CppFunctionNumbaType class to handle CUDA kernel functions

- Detect CUDA kernels based on attributes/naming

- Generate Numba CUDA kernel signatures for detected kernels

- Register lowering to generate LLVM IR for kernels

Deliverables:

- CppFunctionNumbaType updated to support CUDA kernels

- CUDA kernel detection and signature generation implemented

- Kernel lowering to LLVM IR registered

Week 4
19.06.2024-25.06.2024

- Handle CUDA-specific function attributes and launch configurations in
CppFunctionNumbaType

- Extract grid dimensions, block dimensions, shared memory from kernel
attributes

- Use launch configurations in lower_cuda_kernel when generating LLVM
IR

Deliverables:

- CUDA function attributes and launch configs handled in
CppFunctionNumbaType

- lower_cuda_kernel updated to use launch configurations

Week 5
26.06.2024 - 2.07.2024

- Implement memory management functions - cudaMalloc, cudaFree,
cudaMemcpy

- Add support in Cppyy-Numba extension to call these CUDA memory
functions

Deliverables: CUDA memory management functions supported

Week 6
3.07.2024 - 9.07.2024

- Implement device management functions - cudaSetDevice,
cudaGetDevice

- Enable switching between GPU devices in Cppyy-Numba

Deliverables:

- CUDA device management functions implemented
- Ability to set/get GPU devices added

Week 7
10.07.2024 -16.07.2024

- Implement kernel launch functions - cudaConfigureCall,
cudaSetupArgument, cudaLaunch

- Generate LLVM IR to launch kernels using these functions

Deliverables:

- LLVM IR generation for launching kernels

- CUDA kernel launch functions supported

Midterm Evaluations

Week 8
17.07.2024 -23.07.2024

- Implement error handling functions like cudaGetLastError

- Propagate CUDA errors appropriately in Cppyy-Numba

Deliverables:

- CUDA error handling functions added
- Proper error propagation mechanism implemented

Week 9
24.07.2024 -30.07.2024

- Develop comprehensive test suite covering different use cases and edge
cases

- Test CUDA data types, memory management, device management,
kernel launches, error handling

Deliverables:

- Comprehensive test suite implemented
- All major CUDA functionality covered in tests

Week 10
31.07.2024 - 6.08.2024

- Test end-to-end CUDA compilation and execution by importing

numba_ext in a demo program

- Validate that CUDA kernels are compiled and run as expected on the GPU

Deliverables:

- End-to-end testing of CUDA compilation and execution

- Demo program showcasing Cppyy-Numba CUDA integration

Week 11
07.08.2024 -13.08.2024

Buffer Week
- Buffer period to handle any overflow tasks
- Work on any pending items from previous weeks

Deliverables:

- Completion of any pending tasks
- Code cleanup and refactoring

Week 12
14.08.2024 -20.08.2024

- Extended testing
- Developing documentation
- Presenting the work

Deliverable:
- Test cases
- Demonstrated reduction of the binary sizes
- Blog post about the achieved results
- Presentation at the compiler-research.org team meeting

Post GSoC / Future Work
● Add advanced support for CUDA streams (synchronizing, process

management)

● Maintain and update documentation

● Provide support and bug fixes for the CUDA integration

References

CUDA support in Cppyy:
https://cppyy.readthedocs.io/en/latest/cuda.html
Numba support in Cppyy:
https://cppyy.readthedocs.io/en/latest/numba.html
Numba CUDA kernels:
https://numba.readthedocs.io/en/stable/cuda/kernels.html
Extend the Cppyy support in Numba:
https://compiler-research.org/assets/docs/Aaron_Jomy_Proposal_2023.pdf
Numba-Cppyy test �le:
https://github.com/wlav/cppyy/blob/master/test/test_numba.py
Numba-CUDA examples:
https://numba.readthedocs.io/en/stable/cuda/examples.html
E�cient and Accurate Automatic Python Bindings with Cppyy Cling:
https://indico.cern.ch/event/1106990/papers/4991292/�les/11773-ACAT___E�cient_and_
Accurate_Automatic_Python_Bindings_with_Cppyy___Cling.pdf
High-performance Python-C++ bindings with PyPy and Cling:
https://wlav.web.cern.ch/wlav/Cppyy_LavrijsenDutta_PyHPC16.pdf
Cuda compilation support to Cling: JIT compile to GPUs
https://www.youtube.com/watch?v=XjjZRhiFDVs
https://www.youtube.com/watch?v=HEGDII5lAfo&t=67s

https://cppyy.readthedocs.io/en/latest/cuda.html
https://cppyy.readthedocs.io/en/latest/numba.html
https://numba.readthedocs.io/en/stable/cuda/kernels.html
https://compiler-research.org/assets/docs/Aaron_Jomy_Proposal_2023.pdf
https://github.com/wlav/cppyy/blob/master/test/test_numba.py
https://numba.readthedocs.io/en/stable/cuda/examples.html
https://indico.cern.ch/event/1106990/papers/4991292/files/11773-ACAT___Efficient_and_Accurate_Automatic_Python_Bindings_with_Cppyy___Cling.pdf
https://indico.cern.ch/event/1106990/papers/4991292/files/11773-ACAT___Efficient_and_Accurate_Automatic_Python_Bindings_with_Cppyy___Cling.pdf
https://wlav.web.cern.ch/wlav/Cppyy_LavrijsenDutta_PyHPC16.pdf
https://www.youtube.com/watch?v=XjjZRhiFDVs
https://www.youtube.com/watch?v=HEGDII5lAfo&t=67s

