

Improve automatic differentiation of object-oriented

paradigms using Clad

Petro Zarytskyi
Julius-Maximilians-Universität, Würzburg

Mentors:

Vassil Vassilev, David Lange
June, 2025

About myself
Email: petro.zarytskyi@gmail.com
Github: PetroZarytskyi
Location: Germany
Citizenship: Ukraine
Timezone: CET, UTC+1 (Berlin)
​
​ I am Petro Zarytskyi, and I’m a Ukrainian Mathematics student at the University of
Würzburg, Germany. I’ve been programming in C++ for the past 4 years, and I’m especially
interested in compiler research and static analysis. I have a lot of experience contributing to the
Clad project and working closely with the team. I’m very familiar with Clang and LLVM.

Related Prior Experience
●​ Contributing to Clad
●​ Technical student at CERN
●​ IRIS-HEP Fellowship, CERN

https://github.com/PetroZarytskyi
https://iris-hep.org/fellows/2023/PetroZarytskyi.html

Project Overview
Clang is a powerful compiler for C, C++, and Objective-C. Clad is a Clang plugin

that enables automatic differentiation (AD) for C++ mathematical functions. It modifies
the abstract syntax tree using LLVM’s compiler capabilities to generate derivative
computing code. The great advantage of Clad is the ability to be integrated into existing
codebases, as it does not require any code modifications. Clad supports both forward
and reverse mode differentiation. The reverse mode is efficient for computations of
derivatives with respect to multiple outputs, which makes Clad well-suited for Machine
Learning, inverse problems, and other applications involving backpropagation.​
​ Automatic differentiation in the reverse mode involves two passes over the
function: the forward pass to compute and store all intermediate variable values, and
the reverse pass to compute the derivatives. Clad supports storing intermediate values
between all basic operations and data-flow. However, Clad does not fully support storing
function call arguments, only trivially copyable types are supported. While Clad can
cover many use cases, this limitation stops it from fully supporting C-style arrays and
non-copyable types. This poses a major constraint on using Clad in Object-Oriented
Programming (OOP) as it means that non-copiable types like unique pointers cannot be
modified with method calls.

Implementation Details
Sometimes Clad needs to modify functions to use them in the forward sweep of

the reverse mode. This functionality is used to properly handle memory allocation of
adjoint objects, which is necessary when working with object or pointer types. The plan
is to modify the existing reverse sweep functions generated by Clad and make them
capable of storing intermediate values.​
​ The main objective during the project will be to find the best generic solution.
However, with memory handling in C++, it is not always possible to determine which
expressions are modified at compile-time. This means that the general solution might
involve tracking memory locations. Working with raw memory is often inefficient and
results in suboptimal code. This brings the necessity to work on a simplified solution to
cover a big portion of use cases while producing efficient and user-friendly code.​
​ There is a type of analysis in automatic differentiation called To-Be-Recorded
(TBR) analysis. Its purpose is to determine which expressions need to be stored in the
forward sweep. It is already partly implemented in Clad. Currently, it only operates in
separate functions and is unable to efficiently handle nested function calls, making it
unsuitable in this context. The other bottleneck TBR poses on reliable usage in this
case is the limited support for pointers: pointer reassignments and address operators
are not supported. Therefore, the next goal in the project will be to enhance TBR

analysis and enable it to find cases where memory is handled in a predictable way, so
that Clad can generate more optimal and concise code. Having this system successfully
implemented will not only add support for storing non-copyable types but will also make
storing copyable structures more efficient because only specific parts of them will need
to be stored.​
​ Finally, the stretch goal of the project will be to investigate how often the fallback
from optimal behaviour occurs by studying use cases. Then, if the difference is
significant, see whether it’s possible to make the system more flexible and limit the
amount of suboptimal code.
​
​

Proposed Timeline​
 Community Bonding Period:

Research the topic by comparing Clad to other AD tools and investigating
existing use cases and bug reproducers. Meet with mentors to discuss
approaches to the project.

 Week 1:
Determine pros and cons of different approaches to modify reverse sweep
functions, i.e., introducing global tapes and extending the functions’ signature
with tape parameters. Consider different solutions to distinguish function local
variables from the ones that need to be restored outside of it in the reverse pass,
e.g., tracking memory locations. Deliverable: Prepare a report for the Clad team
listing missing features and proposing solutions with pros and cons.

Weeks 2-3:
Implementing the previously chosen solution. Adding tests. Deliverable: Having
a pull request that succeeds all tests.

Week 4:​

 ​ Buffer week.

Week 5:
Running benchmarks to make sure the performance stays high. Deliverable:
Prepare a report on the performance of the solution in benchmarks and Clad use
cases.​

Week 6:
Study the use cases to determine the common characteristics of where
optimizations can be made. Develop a solution to improve the existing

To-Be-Recorded analysis implementation, including nested function call handling
and improving pointer/reference support. Deliverable: Having a report on the
planned solution.

Midterm Evaluations

Weeks 7-9:
Improve the To-Be-Recorded analysis and attach the new features to the AST
generating engine. Write tests for the new capabilities. Deliverable: Having a
pull request that succeeds all tests.​

Week 10:
Run benchmarks and compare the newly To-Be-Recorded analysis system with
the fallback one implemented earlier. Also, run benchmarks to see if there is an
improvement in performance in existing Clad use cases. Deliverable: A report
listing all mentioned performance comparisons.

Week 11:
Buffer week.

Week 12:
Investigate how often the fallback to suboptimal behavior occurs in use cases. If
the room for optimization turns out to be significant, attempt to make the system
more flexible.

Week 13:
Improve documentation. Prepare the final presentation. Deliverable: Present the
work, including benchmarks and use cases. Point out possible next steps or
issues that need to be addressed in the future.​

​
Candidate’s Other Commitments​
My only other commitment is going to be the studies at the University of Würzburg until
June. The final exams will take place in early July. This is not going to pose a limitation
on my availability throughout the project timeline, as attendance is not mandatory.
Moreover, this semester, I have deliberately picked non-time-consuming subjects so
that I can focus more on GSoC.

	Related Prior Experience
	Project Overview
	Implementation Details
	​Candidate’s Other Commitments​My only other commitment is going to be the studies at the University of Würzburg until June. The final exams will take place in early July. This is not going to pose a limitation on my availability throughout the project timeline, as attendance is not mandatory. Moreover, this semester, I have deliberately picked non-time-consuming subjects so that I can focus more on GSoC.

