
IRIS-HEP
Proposal

Add support for custom types in Clad with a
focus on the Softsusy library.

By
Parth Arora

Table of Contents

1. Abstract

2. Deliverables

3. Project Details

● Add support for differentiating user-defined types.

● Add support for missing C++ syntax.

● Improve support for differentiating calls to ordinary functions.

● Add support for differentiating calls to member functions and overloaded
operators.

● Add support for differentiating more varieties of function signatures.

● Additional Work

4. Schedule of Deliverables

5. Obligations

6. General Notes

7. About Me

1. Abstract

Clad is a Clang plugin that can differentiate mathematical functions represented as C++
functions using automatic differentiation coupled with analysing and transforming the
clang abstract syntax tree. Clad is an emerging automatic differentiation tool that holds
great potential. It already supports many exciting features such as array differentiation,
differentiating functors and lambda expressions, built-in error estimation framework and
so much more.

A few crucial things that are holding Clad down are:

● Not supporting user-defined (custom) types.
● Not supporting C++ STL.
● Supporting only a subset of C++ syntaxes.
● Not supporting calls to member functions in both the forward mode AD and the

reverse-mode AD.
● Limited support for calls to ordinary functions in the reverse mode AD and the

forward mode AD.

This project majorly focuses on realising clad potential by making it compatible with and
battle testing it on Softsusy and Eigen libraries codebases. This project assumes that all
definitions of the functions that require differentiation are provided in the same file or
header-only header files, such that no linking is required.

User-defined types in C++ help to make code more readable and maintainable. Many
user-defined programs and almost every major library uses user-defined types. Thus it is
very crucial for clad to support differentiating user-defined types. In light of this, the first
goal of the project is to add support for differentiating user-defined types in clad.

Clad currently does not support several C++ syntax constructs. Many of these are
essential and are very well used in day-to-day programming such as break and continue
statements that are currently not supported in clad reverse-mode AD. The second goal of
the project is to battle test clad on Softsusy and Eigen libraries codebases to find and add
support for most of the missing syntax as well as to improve support for differentiating
function calls.

2. Deliverables

● Add support for differentiating user-defined (custom) types.

● Add support for missing C++ syntax constructs.

A non-exhaustive list of missing C++ syntax constructs:

● break and continue statements in reverse mode AD.
● switch statement in reverse mode AD.
● new and delete statements.
● Recursive functions in the forward mode AD.
● Range loops
● Iterators
● Lambda expression calls

● Improve support for differentiating calls to non-member functions.

● Add support for differentiating more varieties of function signatures.

● Add support for differentiating calls to member functions and overloaded
operators

● Extend the test and benchmark coverage.

3. Project Details

Add support for differentiating user-defined types.

Example of function using user-defined types.

After adding support for differentiating user-defined types, we will be able to use them as
the function return type, function parameter types and inside the function body.

Some of the challenges and implementation details are described below:

Derived types of user-defined types.

In the derived type, we need a separate variable to store the derivative of each member
variable. If we differentiate a variable of type double with respect to a member variable
of type double, then we will require a variable of type double to store the derivative.
Similarly, if we are differentiating a variable of type UserDefinedVectorType with respect
to a member variable of type double, then we will require a variable of type
UserDefinedVectorType to store the derivative and so on.

For each class and the type of output variable, we will need a new type to store the
derivative of the output variable with respect to the class object. The basic idea is that
each primitive type should be replaced by the type of the output parameter.
For example, the derived type for storing the result of differentiating a user-defined object
of type RealType with respect to an object of user-defined type UserDefinedVectorType,
is described below:

UserDefinedVectorType

__clad_UserDefinedVectorType_DerivedType_Real

__clad_UserDefinedVectorType_DerivedType_Real is used to store derivatives of a
Real object type wrt UserDefinedVectorType object.

Creating the derived types of user-defined types.

We can either decide to create derived types automatically using Abstract Syntax Tree
(AST) transformation through Clad or let the user create the derived type manually.

Creating derived types automatically through clad has a few problems and challenges that
need to be addressed.

Until now, in clad, we have always created derived types of functions at compile time
using C++ metaprogramming because creating derived types through AST transformation
is error-prone and plugging in the newly created type in the abstract syntax tree is a
non-trivial task since it will involve examining and modifying the surrounding AST
to keep the semantics intact.

Another challenge of automatically creating derived types through Clad is that users need
to pass an address of the object in reverse mode AD functions to store the derivatives.

Now, if the derived type is created automatically through clad, then the users would not
be able to access the derived type to create the object that should store the derivative.

Please note that we cannot create derived types of classes through metaprogramming
because there is no way to traverse over class members.

Considering these problems, we have few options to resolve them.

● The user manually defines the derived type.

In this idea, the user will manually create the derived type for the user-defined
type and clad will use that derived type wherever it requires the derived type of
that user-defined class.

This method puts more work on the user and thus it is less desirable.

● User manually only forward-declares the derived type and clad
automatically defines the type.

In this idea, users will need to manually forward-declare all the derived types. On
encountering the forward declarations clad will automatically generate the derived
types. This idea is better because it reduces the work from the user yet solves most
of the challenges that were discussed above.

For example, if the user writes the code that is shown below, then clad will
automatically generate the definition of the class

_clad_UserDefinedVectorType_DerivedType_Real.

Type of derived member functions

Since member functions usually call other member functions and implicitly have access
to the this pointer to access the class object. They also need to have access to the
derivative of this object with respect to the output parameter.
For example, consider a member function such as shown below:

If the reverse member function is called in some other function where an object of
UserDefinedVectorType is used and the output parameter is of Real type. Then
we will need to create a new member function such as reverse_grad that is as follows:

Please note that we may need to create a new derived member function for each output
variable since a different derived type is created for a different output variable.

The rest of the implementation details of adding support for differentiating user-defined
types are relatively straightforward and will be inspired by the current implementation of
deriving ordinary variables in Clad.

Add support for missing C++ syntax constructs.

Adding support for many of the missing C++ syntax constructs is straightforward to
implement and depends greatly on the particular syntax. For some other syntax, adding
support is much more interesting and complicated.

Here, I will discuss implementation details of adding support for some of the syntaxes.

Adding support of break and continue statement in the reverse mode loops

break and continue statements abruptly modify the control flow of the code. To correctly
compute the derivative, Clad needs to keep track of which statements were executed in
the forward iteration of the loop so that clad can execute corresponding derived
statements in the associated reverse iteration of the loop. For this, clad needs to store
which break/continue statement was hit in which loop iteration.

Since Clad can only determine which break/continue will be hit at runtime. We need a
way to change the control flow of code at runtime depending on which break/continue
was hit. To handle this we can enclose the entire body of the loop in the switch statement
and associate a case label with each break/continue statement. Here the switch statement
will work as a goto statement whose associated label can be specified at runtime. Using
this strategy, we will store which break/continue statement was hit in a clad tape. Since
the clad tape is based on the stack data structure, it will allow us to retrieve information
regarding which break/continue was hit in the reverse order (starting from the last
iteration of the loop) and that’s exactly what we want, thus it will make implementation
relatively easier.

An example of this transformation is described below:

Original loop

Forward block Reverse block

Adding support for differentiating for range loops

Conceptually, the implementation of adding support for differentiating for range loops
will be very similar to the current implementation of differentiation of for and while
loops. Therefore, they will be used as an inspiration for adding support for differentiating
for range loops.

During the project, clad will be battle-tested on codebases of C++ STL, Softusy and
Eigen libraries. It is expected much more missing syntax will be discovered during this.

Improve support for differentiating calls to ordinary functions.

Currently, the forward mode AD does not support differentiating multiple arguments
function calls. Please see issue #168 for more details.
This can be relatively easily solved by calculating the gradient of the callee function and
then using the computed gradient to correctly calculate derivatives.

And also neither the forward mode AD nor the reverse mode AD support differentiating
function calls with pointers as function arguments.

This can also be relatively easily solved by implementing a general dereference operation
to use whenever a pointer is found. The general implementation will aim to allow
differentiating an arbitrary number of dereferencing operators with one variable (*var,
var, *var, and so on).

If we are differentiating a function call that takes reference variables as arguments, then
in reverse mode, we may need to consider that the callee function is a pure function (it
always gives the same value of output for the same values of arguments). I need to
research more about the handling of reference variables as parameters before saying
anything about its implementation.

https://github.com/vgvassilev/clad/issues/168

Add support for differentiating calls to member functions and
overloaded operators.
For the most part handling of calls to member functions will be similar to the handling of
calls to ordinary functions, with one big exception, member functions will have an extra
parameter, to store the derivative of the this pointer object. I currently need to research
more about the implementation of ordinary functions and member functions.

Internally calls to overloaded operators are handled in the same way as calls to member
functions, therefore, implementation for adding support for differentiating calls to the
overloaded operators will be able to reuse components defined for adding support for
differentiating calls to member functions.

Add support for differentiating more varieties of function signatures.

Many of the functions in the Softsusy library have a different signature than what clad
supports.

Example of one such function

This function has 3 outputs, m1, m2 and m3. Currently, there is no function in Clad that
can calculate the Jacobian matrix in which m1, m2 and m3 are differentiated with respect
to a.

Therefore we need to add support for differentiating more varieties of function signatures
in clad.

Implementation of support for differentiating more varieties of function signatures will be
inspired by how Clad handles differentiation of currently supported function signatures. I
need to research more about it before saying anything regarding its implementation
details.

Additional Work

Additionally, I want to work on the following areas as well to improve Clad.

Add automated assert-based testing of clad automatic differentiation library
using clad numerical differentiation library.

This work focuses on making Clad testing framework more robust. Since clad is an
open-source project, and like most open-source different people will work on different
parts of the project over the years. A good and robust testing framework will make it
easier and faster to find bugs.

For this we will first need to modify clad numerical differentiation functionality to work
standalone, currently, it only works as a fallback to automatic differentiation.

This functionality can be implemented either as a plugin for the ForwardModeVisitor and
the ReverseModeVisitor. It will modify the generated derived function to include assert
statements at the end to verify that results from both automatic differentiation and
numerical differentiation are consistent with each other, and of course, we will need to
decide a satisfiable value of accepted(or allowed) error since numerical differentiation
results have a precision loss.

Make generated source file through -fgenerate-source-file
standalone usable

The goal of this work is to make the generated source file using -fgenerate-source-file
error-free and standalone usable. This requires at least the following:

● Issue #115 needs to be fixed. This issue leads to the generation of multiple
definitions of the same function in the generated source file thus leading to
redefinition errors.

● When we are writing derived member functions to the file, we are only writing
derived member functions and not the associated class. In the derived member
functions, we are using this pointer and class member variables which are causing
a compile-time error. Therefore we should print the whole class along with derived
member functions.

https://github.com/vgvassilev/clad/issues/115

4. Schedule of Deliverables
● There are 5 major milestones:

1. Adding support for user-defined types.
2. Add support for missing C++ syntax and constructs.
3. Improve support for ordinary function calls and add support for member

function calls
4. Battle-test clad using Softsusy and Eigen library.
5. Complete work specified under additional work in project details.

● If more things come up or plan change, they can also be incorporated

Date Work

Nov 5 - Nov 19 Start working on adding initial support of differentiating
user-defined types.

Nov 19 - Dec 3 Complete initial support of differentiating user-defined types; add
tests and documentation for the same.

Dec 3 - Dec 17 Improve support for differentiating calls to ordinary functions in the
forward mode AD.

Dec 17 - Dec 31 Improve support for differentiating calls to ordinary functions in the
reverse mode AD.

Dec 31 - Jan 14 Add support for differentiating calls to member functions in reverse
mode AD.

Jan 14 - Jan 28 Add support for differentiating calls to member functions in the
forward mode AD

Jan 28 - Feb 11 Add support for differentiating overloaded operators

Feb 11 - Feb 25 Add new signatures of clad differentiation functions as is required
for Sofsusy

Feb 25 - Mar 11 Start adding support for missing syntax such as new, delete, for
range loops, switch statements, arbitrary pointer dereference.

Mar 11 - April 1 Battle test clad using Softsusy and Eigen library; add support of any
missing syntax.

Apr 1 - Apr 8 Add automatic assert-based testing of reverse-mode AD using clad
numerical differentiation library

Apr 8 - Apr 22 Make generated source file through -fgenerate-source-file
standalone usable

Apr 22 - May 5 Buffer-time. Test and submit final code and
project summaries. Prepare documentation and
remove any bugs

5. Obligations

I will be available to work part-time (a minimum of 25 hours per week) during the project
period.

6. General Notes
I believe that communication is a vital aspect of any project and to ensure that the status
of the project is communicated properly, I will contact my mentors at least once every 3
days to update them on how the work is progressing, discuss current problems and ask for
their suggestions for the problems at hand.

7. About Me

Name: Parth Arora

Email: partharora99160808@gmail.com

Github: parth-07

Linkedin: parth-r07

Resume: link

Phone number: +91 9354826906

Time Zone: +5:30 GMT

University Name: University School of Information, Communication and
Technology, GGSIPU, New Delhi, India.

Course: Bachelor of Technology in Computer Science Engineering

CGPA: 8.5

Current Year: 4th

mailto:partharora99160808@gmail.com
https://github.com/parth-07
https://www.linkedin.com/in/parth-r07
https://drive.google.com/file/d/1sgzGE2TGpTfKrgtafbyf9U8nK5aE6QY6/view?usp=sharing

