
Google Summer of Code

PROPOSAL
Add support for functor objects in clad

By
Parth Arora

Table of Contents

1. Abstract

2. Deliverables

3. Project Details

3.1 Add support for differentiating functors and lambda expressions using
clad::differentiate and clad::gradient.

3.2 Add support for differentiating member functions using clad::hessian
and clad::jacobian.

3.3 Add support for differentiating functors and lambda expressions using
clad::hessian and clad::jacobian.

3.4 Fix various existing issues and improve clad coverage by adding support
for currently unsupported syntax.

4. Schedule of Deliverables

5. Obligations

6. General Notes

7. About Me

7.1 Personal Information and Contact Details

7.2 Why Me

1. Abstract

Differentiation support for functions is available in clad. But support for direct
differentiation of functors and lambda expressions is missing. Many computations are
modelled using functors and functors and lambda expressions are becoming more and
more relevant in modern C++. Thus, there’s a growing need for support for directly
differentiating them in clad.

Clad is very fast and efficient but it currently lacks support for various C++ statements,
syntax and the ability to differentiate non top-level declarations. These things are required
to make clad more robust and convenient to use.

This proposal aims to add support for directly differentiating functors and lambda
expressions and increase clad coverage and overcome its shortcomings by fixing various
existing issues and adding support for various currently unsupported syntax.

2. Deliverables

● Add support for differentiating functors and lambda expressions using
clad::differentiate and clad::gradient

● Add support for differentiating member functions using clad::hessian and
clad::jacobian

● Add support for differentiating functors and lambda expressions using
clad::hessian and clad::jacobian

● Fix various existing issues and improve clad coverage and overcome its
shortcomings by adding support for currently unsupported syntax

● Proper documentation and tests for the above-mentioned components.

3. Project Details

The following list briefly explains and elucidates how the goals (deliverables) of this
proposal will be achieved.

3.1 Add support for differentiating functors and lambda expressions using
clad::differentiate and clad::gradient

For differentiating functors and lambda expressions, clad needs to do 2 things:

● Implicitly differentiate operator() member function whenever an object is passed

● Remember the passed object so that users do not have to explicitly pass it for
future CladFunction::execute calls. CladFunction class is an ideal place to store
the passed object.

If we can differentiate declarations that are not top-level declarations then this will be a
trivial task. As we can do the mentioned 2 things in a different, newly created clad
differentiation functions specialized for objects. But as of now, clad only supports
differentiating top-level declarations.

We can add support for differentiation of all declarations (this can be very complicated),
or just specifically allow differentiation of all declarations in the clad functions
specialized for objects, this can be comparatively easily done.

We will need to perform some AST transformations near the call site and modify
DiffPlanner class to allow non top-level declaration differentiation in clad functions
specialized for objects using this idea.

The diagram below shows the General workflow for clad differentiation functions
specialized for objects :

All clad differentiation functions return an object of type CladFunction which provides
information about and interface to the derived function as well as saves pointer to the
passed object. If the user differentiates function, i.e. there is no functor object, then
m_Object (pointer to functor) will have a default value of nullptr.

Thus, CladFunction class will need to be modified to accommodate these changes,

Attributes in blue need to be added

Now, CladFunction::execute() can check if we are differentiating a functor or function,
and can thus make calls to the underlying derived function accordingly.

Diagram below shows general workflow for CladFunction::execute()

Here m_Function is a pointer to the actual derived function

We can also use just AST transformations rather than adding support for differentiating
non top-level declarations to achieve this. To achieve this just using AST
Transformations, we need to implicitly transform all codes like 1) into code like 2)

1)

2)

All these ideas will be studied and compared thoroughly, and the best approach will be
selected for the implementation.

3.2 Add support for differentiating member functions using clad::hessian and
clad::jacobian

As of now, clad::hessian and clad::jacobian do not support differentiation of member
functions. To differentiate functor objects and lambda expressions, we first need to be
able to differentiate member functions.

For this, I will need to work on and modify HessianModeVisitor and
JacobianModeVisitor in the DerivativeBuilder.cpp file to add support for differentiating
member functions.

I need to research in more detail for its implementation.

3.3 Add support for differentiating functors and lambda expressions using
clad::hessian and clad::jacobian

The process to achieve this goal is very similar to the process of achieving goal 1.

3.4 Fix various existing issues and improve clad coverage by adding support for
currently unsupported syntax.

I will also solve existing issues including but not limited to:

#10 Implement differentiation of templated functions.

#168 Support of differentiation of multi-arg calls in the forward mode

#128 Fix potential issues with side effects in conditional operators in forward mode

#119 Improve diagnostic messages for nested calls differentiation

https://github.com/vgvassilev/clad/issues/10
https://github.com/vgvassilev/clad/issues/168
https://github.com/vgvassilev/clad/issues/128
https://github.com/vgvassilev/clad/issues/119

#116 Fix nested function calls in the forward mode

#91 Emit hard error when differentiation visits unsupported statement

#210 function qualifiers of derived functions in reverse differentiation are
inconsistent with function qualifiers of derived functions in forward

differentiation

I will also add support for currently unsupported syntax in functions to be differentiated
including but not limited to:

● Range-based loop
● While loops
● Switch statements

4. Schedule of Deliverables

● There are 3 major milestones:
1) Add support for differentiating functors and lambda expressions.
2) Add support for differentiating member functions in clad::hessian and

clad::jacobian
3) Fix existing issues and improve clad coverage by adding support for

currently unsupported syntax

● If more things come up or plans change, they can also be incorporated.

● Few days before the evaluation period have been left free for completing any
remaining work (if any). This provides sufficient buffer-time for making sure that
the timeline is followed.

https://github.com/vgvassilev/clad/issues/116
https://github.com/vgvassilev/clad/issues/91
https://github.com/vgvassilev/clad/issues/210

Date Work

April 14 - May 17 I will study the codebase of clad properly so that
I’m able to complete everything I have proposed

smoothly

Community Bonding period begins

May 17 - June 7 During this time I will get in touch with my
mentors and will discuss and design the basic

layouts for the project

Community Bonding period ends

June 7 - June 17 Add support for differentiating functor objects in
clad::differentiate

June 17 - June 27 Fix existing bug of differentiating member
functions in clad::gradient and add support for

differentiating functors in clad::gradient

June 23 - July 3 Add support for differentiating member functions
in clad::hessian and clad::jacobian

July 3 - July 10 Add support for differentiating functor objects in
clad::hessian and clad::jacobian

July 10 - August 1 Fix existing issues listed in section 3.4

August 1 - August 16 Add support for currently unsupported syntax
listed in section 3.4

August 16 - August 23 Buffer-time. Test and submit final code and
project summaries. Prepare documentations and

remove any bugs.

5. Obligations

I will be available to work full time (a minimum of 40 hours per week) during the GSoC
period and have no other personal or professional commitments during this period.

6. General Notes

I believe that communication is a vital aspect of GSoC and to ensure that the status of the
project is communicated properly, I will be undertaking the following steps:

● I will publish a blog every week detailing:
○ Tasks completed in that week.
○ Hurdles faced to complete the tasks.
○ How I overcame the hurdles.

● I will contact mentors daily on gmail to update them how the work is progressing.

7. About Me

7.1 Personal Information and Contact Details

Name: Parth Arora

Email: partharora99160808@gmail.com

Github: parth-07

Linkedin: parth-r07

Resume: link

Phone number: +91 9354826906

mailto:partharora99160808@gmail.com
https://github.com/parth-07
https://www.linkedin.com/in/parth-r07/
https://drive.google.com/file/d/1YBWr4mho4-0u2-wUMDwD2mzI8AcuL0Pe/view?usp=sharing

Time Zone: +5:30 GMT

University Name: Guru Gobind Singh Indraprastha University, New Delhi, India

Current year: 3rd year

7.2 Why Me

I am an enthusiastic person who is always motivated to learn new things. I am proficient
in C++ and use it almost every day. I am also proficient in C, python and javascript. My
interest lies in contributing to the field of science and technology by helping to develop
libraries, tools and framework that can help the scientific community with their research.
I am also very fascinated by the core idea used in clad of using AST to differentiate
functions at compile time, and thus want to contribute and work on clad.

I regularly participate in many competitive programming contests and have secured good
ranks in them. I am well versed in data structures and algorithms and always enthusiastic
to learn about new techniques to make the code more efficient while still being easy to
maintain and understand.

I care a lot about the efficiency, readability and maintainability of the code that I write.
I have made many projects in web development and scripting in the past. I have also
made an efficient generic header-only template library for data structures and algorithms
in C++ that are commonly used in competitive programming. (Repository link:
https://github.com/parth-07/ds-and-algos)

I’ve been working with clad for around a month now and I am very much familiar with
it’s codebase. I will be very excited to contribute much more if given the opportunity to.
I’ve raised following issues in this time period:

● #198 : Clad is not considering truncation of variables inside function for
differentiation

● #199: Compile time error while differentiating constant member functions

● #209: Differentiating variadic functions in reverse, hessian and jacobian modes

https://github.com/parth-07/ds-and-algos
https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad/issues/198
https://github.com/vgvassilev/clad/issues/199
https://github.com/vgvassilev/clad/issues/209

● #210: function qualifiers of derived functions in reverse differentiation is
inconsistent with function qualifiers of derived functions in forward differentiation

● #211: Error when using function pointer variable to pass function address in
differentiation calls

I have implemented and fixed the following issues:

● #200: Support member functions with qualifiers in differentiation calls. This PR
fixes #199, and have been merged into the master branch.

● #212: Add support for passing fns using fn pointers in differentiation calls. This
PR fixes #211, and this PR has not yet been merged into the master branch.

I have started working on more issues and will be sending more PRs in the coming
weeks. I’ll continue sending PR’s and further improve clad long after GSoC.

https://github.com/vgvassilev/clad/issues/210
https://github.com/vgvassilev/clad/issues/211
https://github.com/vgvassilev/clad/pull/200
https://github.com/vgvassilev/clad/issues/199
https://github.com/vgvassilev/clad/pull/212
https://github.com/vgvassilev/clad/pull/212

