
GSoC 2021 Project Report

Add Support for differentiating functor

objects in Clad
Student: Parth Arora Organisation: CERN-HSF Mentors: Vassil Vassilev, David Lange

Project repository: Clad Project proposal: Proposal link

Table of Contents

Clad overview

Project overview

Project Deliverables

Project Results

Added support for differentiating functor objects and lambda

expressions.

Extend clad by adding support for differentiating more C++ syntax and

constructs.

Made clad more robust by adding an automatic testing framework and

fixing various existing issues.

Added support for building clad Doxygen documentation.

Contributions

Pull requests

Issues opened

Conclusion

Acknowledgement

Clad overview

Clad is an automatic differentiation clang plugin for C++. It can differentiate

mathematical functions represented as C++ functions. For each function that is to be

differentiated, Clad creates another function that computes its derivative.

https://github.com/parth-07
https://hepsoftwarefoundation.org/
https://github.com/vgvassilev
https://github.com/davidlange6
https://github.com/vgvassilev/clad
https://drive.google.com/file/d/1CT6KuXR1n3ZlF4ZYXAE27dXS3yjLo7AY/view?usp=sharing
https://github.com/vgvassilev/clad

Clad analyses the abstract syntax tree (AST) produced by the clang compiler to

differentiate the functions using automatic differentiation (AD). Automatic

differentiation avoids all the usual disadvantages of symbolic and numerical

differentiation. Clad provides an interface to execute the differentiated function and

obtain its source code. A simple example to demonstrate clad usage:

double fn(double i, double j) {

 return i*j;

}

int main() {

 // Create a function that computes derivative of 'fn' w.r.t 'i'

 auto d_fn = clad::differentiate(fn, "i");

 // Computes derivative of 'fn' w.r.t 'i' when (i, j) = (3, 4)

 double res = d_fn.execute(3, 4); // res is equal to 4

 // 'getCode' returns string representation of the generated derived function.

 const char* derivative_code = d_fn.getCode();

}

Project overview

Many computations are modelled using functor objects and lambda expressions. These

constructs are becoming more and more popular and relevant in modern C++. This project

adds support to differentiate functor objects and lambda expressions in Clad.

This project also focusses on general improvements to Clad by adding support for

differentiating more statements and making Clad more robust by adding support for

additional testing and fixing various existing bugs.

All the contributions are made in the project main repository: Clad

Project Deliverables

Add support for differentiating functor objects and lambdas in both forward and

reverse mode automatic differentiation in Clad.

Extend Clad by adding support for differentiating more C++ syntax and

constructs.

Make Clad more robust by adding an automatic testing framework and fixing

various existing issues.

Add support for building Clad Doxygen documentation.

Project Results

Added support for differentiating functor objects and lambda expressions.

Now, Clad supports differentiating functor objects and lambda expressions in both

forward and reverse mode automatic differentiation.

// An object of class type that has defined call operator ('operator()')

class Experiment;

https://github.com/vgvassilev/clad

// both ways are equivalent

auto d_E = clad::differentiate(&E, "i"); // passing functor by pointer

auto d_ERef = clad::differentiate(E, "i"); // pasing functor by reference

auto lambda = [&a](double i, double j) {

 return i*j;

 };

// both ways are equivalent

auto d_lambda = clad::differentiate(&lambda, "i"); // passing lambda by pointer

auto d_lambdaRef = clad::differentiate(lambda, "i"); // passing lambda by reference

// computes derivative of `lambda` when (i, j) = (3, 4)

double res = d_lambda.execute(3, 4);

In brief, the core idea used for the differentiation of functor objects and lambda

expressions is as follows:

Implicitly differentiate the overloaded call operator defined by the functor(or

lambda expression) type.

Store the address of the functor object in the resulting CladFunction object.

(CladFunction class stores all the necessary information about the derived

function to conveniently access, execute and debug them.)

Now, CladFunction automatically takes the stored functor object address to

execute the derived function. Thus, there's no need to explicitly pass the

functor object (or lambda expression) while executing the derived function

through the CladFunction object.

Some of the challenges faced during its implementation:

The Implementation of differentiating functors and lambda expressions depended

on the differentiation of member functions using clad differentiation

functions.

Clad differentiation functions are as follows:

clad::differentiate - differentiates function with respect to a single

parameter using forward mode automatic differentiation.

clad::gradient - differentiates function with respect to multiple

parameters using reverse mode automatic differentiation.

clad::hessian - compute hessian matrix of a function with respect to

multiple parameters using both forward and reverse mode automatic

differentiation.

clad::jacobian - compute jacobian matrix of a function with respect to

multiple paramters using reverse mode automatic differentiation.

Differentiation of member functions using reverse mode differentiation had a

bug that used to cause the resulting program to crash at runtime. The cause of

the bug was inconsistencies in the clang Abstract Syntax Tree in the updated

call expression site. It took us quite a while to solve this bug in an optimal

way. It was fixed in PR #252.

https://github.com/vgvassilev/clad/pull/252

And also, in the reverse mode, the derived member functions did not preserve

original member function qualifiers. This was essential to resolve to reduce

unnecessary restrictions while differentiating CVR qualified functor objects.

It was fixed in PR #249

clad::hessian did not support differentiating member functions before. Hence,

the support for differentiating member functions in clad::hessian was added in

PR #250.

Obtaining the correct CVR qualified functor type while allowing functor objects

to be passed both by pointers and references was interesting to implement, and

had its fair share of complexities.

Extend clad by adding support for differentiating more C++ syntax and

constructs.

Added support for differentiating while and do-while statements in both the forward

and the reverse mode automatic differentiation.

It was thought-provoking and exciting to handle all the corner cases associated with

applying automatic differentiation to while and do-while statements.

With this added support, clad can now differentiate, in both the forward and the

reverse mode automatic differentiation, functions containing while and do-while

statements.

For example,

while(int index = counter) {

 res += i;

 counter-=1;

}

In forward differentiation mode, while statement displayed above gets differentiated

to,

while (int index = counter)

{

 int _d_index = _d_counter;

 _d_res += _d_i;

 res += i;

 _d_counter -= 0;

 counter -= 1;

}

Whereas in reverse differentiation mode, same while statement gets differentiated

to,

// forward pass

_t0 = 0;

while (int index = counter)

{

 _t0++;

 res += i;

 counter -= 1;

https://github.com/vgvassilev/clad/pull/249
https://github.com/vgvassilev/clad/pull/250

}

// reverse pass

while (_t0)

{

 {

 {

 int _r_d1 = _d_counter;

 _d_counter += _r_d1;

 _d_counter -= _r_d1;

 }

 {

 double _r_d0 = _d_res;

 _d_res += _r_d0;

 *_d_i += _r_d0;

 _d_res -= _r_d0;

 }

 }

 _t0--;

 {

 _d_counter += _d_index;

 _d_index = 0;

 }

}

Added support for differentiating switch statement in the forward mode automatic

differentiation.

It was fascinating to handle switch statements because of the interesting scope rules

associated with the case labels, C++17 switch init statements and the sudden change in

the flow of control depending on the switch condition.

With this added support, clad can now differentiate functions containing switch

statements in the forward mode differentiation.

For example,

 switch(int choice = index) {

 case 0:

 res += i;

 break;

 default:

 res += j;

 }

in forward differentiation mode, switch statement displayed above gets

differentiated to,

{

 int _d_choice = _d_index;

 switch (int choice = index)

 {

 case 0:

 {

 _d_res += _d_i;

 res += i;

 break;

 }

 default:

 {

 _d_res += _d_j;

 res += j;

 }

 }

}

Made clad more robust by adding an automatic testing framework and fixing

various existing issues.

Automatic testing of the reverse mode differentiation using the forward mode

differentiation

To ensure clad is producing consistent derivative results using both forward and

reverse mode automatic differentiation, now we can optionally enable additional

testing of derivatives produced by the reverse mode using the forward mode automatic

differentiation. This optional testing can be enabled by running clad with -fenable-

reverse-mode-testing compile-time flag.

The primary goal of the automatic testing is to make clad more robust by making it

easier to find any inconsistencies and incorrect derivatives produced in the forward

and reverse mode AD.

The automatic testing modifies the computed derived gradient function as follows:

double fn_grad(double i, double j) {

 // make copy of all the arguments.

 // These will be used to call the forward mode differentiated functions.

 double _p_i = i;

 double _p_j = j;

 ...

 // usual code to calculate the function gradient

 ...

 // Verify derivative w.r.t 'i' is equal using both reverse and forward mode.

 clad::

 VerifyResult(*_d_i, fn_darg0(_p_i, _p_j), /*assertMessage=*/

 "Inconsistent differentiation result with respect to the "

 "parameter 'i' in forward and reverse differentiation mode",

 "FileName.cpp", "fn_grad");

 // Verify derivative w.r.t 'j' is equal using both reverse and forward mode.

 clad::

 VerifyResult(*_d_j, fn_darg1(_p_i, _p_j), /*assertMessage=*/

 "Inconsistent differentiation result with respect to the "

 "parameter 'j' in forward and reverse differentiation mode",

 "FileName.cpp", "fn_grad");

}

clad::VerifyResult verifies that both the derivative values are equal, if the

verification fails, then it prints an "Assertion failed" message and aborts the

program.

Pull request for this is currently in review as of 20th August and is planned to be

merged soon.

Fix various existing issues

Accuracy and robustness are really important for a mathematical library like clad. I

spent good amount of time fixing existing bugs in the GSoC second coding phase.

I fixed the following issues:

Issue

link
Description

#253 Support reference variables in reverse mode differentiation

#265 Reverse mode do not create derived variables for all parameters

#277
Derived variables of variables defined in loop are not reset to 0 at

each iteration in reverse mode

#292
Gradient overloaded function does not do perfect forwarding for the *this

object

Added support for building Clad Doxygen documentation.

I modified Doxygen configuration file, added support for building Clad Doxygen

documentation using CMake and added configuration script for hosting the documentation

on readthedocs.

Two new cmake flags were added for the purpose of creating documentation.

CLAD_INCLUDE_DOCS : Generate targets of all the enabled documentation tools

CLAD_ENABLE_DOXYGEN : Enables the generation of browsable HTML documentation

using doxygen. Defaults to OFF.

Clad Doyxgen documentation can be found here

Contributions

All the contributions are made in the project main repository: Clad

Pull requests

PR

link
Description

#235 Add support for building doxygen documentation using cmake

#240 Add support for differentiating functors in forward mode

#243 Remove dependency of how the fn is passed to clad diff functions

#249 Preserve original member function qualifiers in the derived function

#250 Modify clad::hessian to support differentiating member functions.

https://github.com/vgvassilev/clad/issues/253
https://github.com/vgvassilev/clad/issues/265
https://github.com/vgvassilev/clad/issues/277
https://github.com/vgvassilev/clad/issues/292
https://readthedocs.org/
https://clad.readthedocs.io/en/latest/index.html
https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad/pull/235
https://github.com/vgvassilev/clad/pull/240
https://github.com/vgvassilev/clad/pull/243
https://github.com/vgvassilev/clad/pull/249
https://github.com/vgvassilev/clad/pull/250

#252 Modify clad diff fns signature to have separate arg for derived fn

#254 Add support for reference variables in reverse mode

#256 Add support for computing gradient of functors using clad::gradient

#259 Add support for differentiating functors using clad::hessian

#260 Add support for differentiating functors using clad::jacobian

#262 Fix building of nested name specifiers in getArg function

#263 Modify code to use effective fn name to create derived fn identifiers

#266 Create derived variables for parameters which are not independent

#269 Add support for differentiating switch statement in forward mode

#272 Add support for differentiating while loops in forward mode

#276 Modify doxygen configuration

#278 Reset derived variables of loops local variables to 0 at each iteration

#282 Add tests and demo for differentiating template functors

#283
Add support for differentiating while and do-while stmts in reverse

mode

#288 Update code to fix clad build warnings

#289 Add support for diff mem variables while diff functors in forw mode

#290 Add support for automatic testing of reverse mode using forward mode

#296 Modify BuildCallToMemFn to do perfect forwarding of *this object

All my contributions to clad can be found here

Some of the PRs are currently in review as of 20th August and are planned to be merged

soon.

Issues opened

The whole list of issues created by me during the GSoC time period can be found here

Conclusion

I was able to complete all of the goals that were decided for the project. I want to

thank my mentors for helping me in making this possible. I will continue contributing

to the project since it aligns with my area of interest, and there are so many more

exciting things that I want to implement in Clad. We will make Clad the best automatic

differentiation tool for C++ :).

Overall, participating in Google Summer of Code was a wonderful experience for me. The

major reason for the great experience is the amazing mentoring by my mentors. I will

cherish this experience forever. While working on the project, I improved my knowledge

of clang and llvm, learned a lot about open-source culture, writing good quality

codes, working in a team environment and managing my time better.

https://github.com/vgvassilev/clad/pull/252
https://github.com/vgvassilev/clad/pull/254
https://github.com/vgvassilev/clad/pull/256
https://github.com/vgvassilev/clad/pull/259
https://github.com/vgvassilev/clad/pull/260
https://github.com/vgvassilev/clad/pull/262
https://github.com/vgvassilev/clad/pull/263
https://github.com/vgvassilev/clad/pull/266
https://github.com/vgvassilev/clad/pull/269
https://github.com/vgvassilev/clad/pull/272
https://github.com/vgvassilev/clad/pull/276
https://github.com/vgvassilev/clad/pull/278
https://github.com/vgvassilev/clad/pull/282
https://github.com/vgvassilev/clad/pull/283
https://github.com/vgvassilev/clad/pull/288
https://github.com/vgvassilev/clad/pull/289
https://github.com/vgvassilev/clad/pull/290
https://github.com/vgvassilev/clad/pull/296
https://github.com/vgvassilev/clad/pulls/parth-07
https://github.com/vgvassilev/clad/issues/created_by/parth-07

Acknowledgement

I am incredibly grateful to my mentors, Vassil Vassilev and David Lange, for their

constant guidance, support, reviews and help. I have learned so much from them this

summer.

I am also very thankful to Google and CERN-HSF for providing me the opportunity to

work on this amazing project, which helped me learn a lot in such a short period of

time.

