Add support for consteval and constexpr functions in
clad

E HEP Software Foundation

Mihail Mihov
Email: mihovmihailp@gmail.com
GitHub: MihailMihov
Phone number: +359 889692277
April 2, 2024

COMPILER

C|IR

RESEARCH

Mentors:
Vassil Vassilev
Vaibhav Thakkar

Synopsis

In mathematics and computer algebra, automatic differentiation (AD) is a set of techniques
to numerically evaluate the derivative of a function specified by a computer program. Auto-
matic differentiation is an alternative technique to Symbolic differentiation and Numerical
differentiation (the method of finite differences). Clad is based on Clang which provides

the necessary facilities for code transformation. The AD library can differentiate non-trivial
functions, to find a partial derivative for trivial cases and has good unit test coverage. Newer
C++ versions provide the constexpr and consteval specifiers, but currently Clad does

not abide by them. The aim of this proposal is to ensure that Clad generated derivative
functions follow the semantics of the original functions.

Benefit to the community

C++ extensively uses constexpr and consteval to enable computation at compile time in the
compiler frontend. This compile time programming is used to form idioms that follow the C++
language design principles to enable zero-cost abstractions. These techniques are quite well
demonstrated in libraries such as STL and boost. The objective of supporting constexpr and
consteval is to enable differentiable programming in the standard library. The high-level
deliverable is to demonstrate that automatic differentiation can work in the compiler frontend

mailto:mihovmihailp@gmail.com
https://github.com/mihailmihov/

during a constant evaluation context. A research aspect of the work is whether we can preserve
the constant evaluation properties in the generated code.

Objectives

1. Implement forward mode differentiation for functions marked with consteval and
constexpr.

2. Extend support to include reverse mode differentiation.

3. Add unit tests that include consteval and constexpr functions.

4. Write documentation and tutorials for using compile-time differentiation.

Expected Outcomes

By the end of this project, Clad will be able to differentiate functions marked with consteval
and constexpr. This will be accompanied by thorough testing, documentation, and tutorials. The
following code should build and behave as the user would expect:

constexpr double sq(double x) { return x*x; }
consteval double fn(double x, double y, double z) {
double res = sq(x) + sq(y) + sq(z);

return res;

}

int main() {

auto d_fn = clad::gradient(fn);

double dx = 0, dy = 0, dz = 0;

d_fn.execute(3, 4, 5, &dx, &dy, &dz);
printf("Gradient vector: [%.2f, %.2f, %.2f]", dx, dy, dz);
return 0;

}

Overview

Constexpr was an identifier introduced in C++11, which specifies that the value of a
certain variable or function can appear in a constant expression. A constant expression can be
evaluated at compile time and it has the added benefit that it can be used in some specific
contexts that require constant expressions (template arguments, array sizes, etc.).

In C++20 consteval was introduced which declared that every evaluated call to such
function must produce a constant expression. This is useful for functions that must never be
evaluated at runtime.

Supporting these constructs in Clad will increase the percentage of functions that Clad
can differentiate and will allow projects based on newer C++ language versions to make use of
automatic differentiation using Clad.

The way that Clad works is that the user either uses clad::differentiate and specifies the
variable w.r.t which to differentiate the function (forward mode) or uses clad::gradient (reverse
mode) which by default differentiates w.r.t every input variable. Both of these functions return a
clad::CladFunction, which contains methods to execute the original function, but that currently
doesn’t support any compile-time evaluation.

The first step in this project will be deciding on a new interface for CladFunction to make
it constexpr-aware. It likely won’t be possible to differentiate all consteval functions at compile
time, so the users will somehow have to be alerted of these limitations.

Afterwards clad::differentiate and clad::gradient will need to be changed to use the new
constexpr/consteval functionality in CladFunction.

Implementation

Task 1: Support in Forward Mode

Objective: Enable forward mode differentiation for constexpr and consteval functions.
Approach: Modify code generation to apply these specifiers to generated derivative func-
tions.

Task 2: Support in Reverse Mode

Objective: Implement reverse mode differentiation for constexpr and consteval functions.
Approach: Ensure reverse mode respects the constexpr and consteval specifiers in derivative
code.

Task 3: Extend Unit Testing

Objective: Ensure reliability of differentiation for compile-time evaluated functions.
Approach: Develop a set of unit tests for various compile-time scenarios.
2

Task 4: Documentation and Tutorials

Objective: Provide users with instructions to utilize compile-time differentiation.
Approach: Create detailed documentation and step-by-step tutorials.

Candidate Background

| believe that I'm capable of completing this project as | have experience both in work-

ing with C++ and also working with language parsers. I've worked on other compiler-related
projects in the Rust language. In one of the projects | had to parse some parts of the AST to add
code assists to the language server. This should have some overlap with what I'll be doing in
this project, as Clad works by parsing the AST generated by Clang. | have also already started
solving some simpler issues in Clad, which | have detailed below.

Related Work

In order to familiarize myself with the project | have already solved an issue and have two
merged pull requests.

* PR #838, where | fixed tests which were failing on 32-bit systems, due to size t

being unsigned int instead of unsigned long.

* PR #840, where | added more developer documentation, detailing how to use
systemd-nspawn in order to make more reproducible local development environments.

Timeline
Community Bonding Period

May 1 - May 26 Engage with the community. Establish regular meetings with the mentors. Set up
the development environment. Audit the documentation and submit
improvements to it where necessary. Write a blog post announcing my about the
community on the compiler-research.org webpage. Fix bugs reported in the
issue tracker.

Coding period begins

Week 1 Make the CladFunction class constexpr-aware. That includes most of the

27 05.2024-02.06.2024 interfaces which do not need runtime support.
Deliverable: CladFunction can be used in constexpr contexts.

Week 2 Develop the first demo using the constexpr concept.

03.06.2024-09.06.2024

Deliverable: A demo showing how Clad can differentiate basic constexpr
functions from <cmath>.

Week 3-4
10.06.2024-23.06.2024

Investigate if the produced code can retain the same constexpr properties as the
original function. That is, if the original function ran in constant evaluation time
will the gradient run in the same time? The answer is almost certainly not
because the tape push/pop operations will need to happen in compile-time,
however, | am not sure if we will need these tape operations for code with no
loops. Fortunately, we can declare success in forward mode easily.

Zooming out, we should work on a diagnostic telling the user that the gradient
won’t run in constant evaluation time like the original function.

Deliverable 1: clad::differentiate working on functions marked as consteval.
Deliverable 2: Unit tests ensuring this functionality

https://github.com/vgvassilev/clad/pull/838
https://github.com/vgvassilev/clad/pull/840

Week 5
24.06.2024-30.07.2024

Extend support to cover more functions marked with constexpr.

Deliverable: clad::differentiate working most functions from the cmath header file
from STL. clad::gradient works on 50% of the functions from the cmath header
file..

Week 6
01.07.2024-07.07.2024

Buffer week and preparation for midterm evaluation.

Midterm Evaluations

Week 8
12.07.2024-21.07.2024

Add support for generating consteval clad::CladFunction’s in forward mode.
Decide on the interface of clad::gradient. The new clad::CladFunction
functionality from the former task should work here too.

Deliverable: User-facing interface along with examples that should work in the
end.

Week 9
22.07.2024-28.07.2024

Research in which cases it will be possible for the generated code to also be
compile time evaluated. Also figure out a way to make the user aware whether
the clad generated functions are immediate.

Deliverable: Technical report and a draft implementation

Week 10
29.07.2024-04.08.2024

Decide whether the interface of clad::differentiate should remain unchanged for
constexpr/consteval and evaluate any alternatives if available.

Week 11
05.08.2024-11.08.2024

Write a blog post about compile-time programming and source transformation
AD with Clad

Week 12
12.08.2024-18.08.2024

Buffer Week

Week 13-14
19.08.2024-01.09.2024

Extended testing, developing documentation, presenting the work.

Deliverable: test cases, code examples to demonstrate the use of immediate
functions; blog post about the achieved results; presentation at the
compiler-research.org team meeting.

Contact Information

* Email: mihovmihailp@gmail.com
* GitHub: MihailMihov

Other Commitments

| won’'t have any other commitments during the standard Google Summer of Code coding
period. | will be starting my first year at university during the first half of September, so that might
reduce my availability for a week or two if | do proceed into the extended period, but that likely
won’t be necessary.

