
Proposal for GSoC 2022

Add Initial Integration of Clad with Enzyme
Manish Kausik H
Indian Institute of Technology, Bhubaneswar
mkh10@iitbbs.ac.in

Abstract

Clad is an open source plugin to the Clang compiler that detects from the parsed Abstract
syntax tree, calls to differentiate a defined function, generates code that differentiates the
function using the concept of Automatic Differentiation(AD) and modifies the Abstract Syntax
Tree(AST) to insert the generated code. While clad works in the frontend of the compilation
process, Enzyme, another LLVM based AD plugin works in the backend, where it takes in code
in LLVM IR form and then differentiates the code.

This proposal aims to integrate Clad with Enzyme, and give the user the option of
selecting Enzyme for Automatic Differentiation, based on his/her needs. This will give the user
the same User Interface as clad for writing his/her code, but the option of using Enzyme as the
backend with all its optimisations to calculate the Derivative/Gradient of the requested function.
This proposal also briefly gives insights into how this can be achieved by tapping into the
existing code base of Clad.

Deliverables

This project proposes to add the following features to clad:

1. Define the Enzyme configuration requirements and enable Clad to communicate
efficiently with Enzyme.

2. Enable Clad to use Enzyme’s AD feature when requested by the User.

3. Document the above features and write unit tests for them.

mailto:mkh10@iitbbs.ac.in


Clad API

Clad provides the function, “clad::differentiate” to differentiate a function in forward
mode and “clad::gradient” to differentiate a function in reverse mode.

Suppose in the following code snippet we want to differentiate function “foo”, then the
corresponding calls to “clad::differentiate” and “clad::gradient” are described in the code snippet:

#include "clad/Differentiator/Differentiator.h"

#include <iostream>

double foo(double x) { return x * x; }

int main() {

// Call clad to generate the derivative of foo wrt x.

auto foo_dx = clad::differentiate(foo, "x");

// Call clad to generate the gradient of foo

auto foo_grad = clad::gradient(foo);

}

“foo_dx” and “foo_grad” are pointers to the functions generated by clad that contain code
for differentiating foo with respect to x and foo’s gradient respectively. These functions are
generated by parsing function foo’s Abstract Syntax Tree(AST) and for every operation
represented by a node of the tree we find its derivative and propagate the pass forward or
backward respectively. The functions generated when dumped, can show the step by step process
involved in the derivative calculations.

Enzyme API

Enzyme asks the user to use the phrase “__enzyme_autodiff”(for Reverse Mode) and
“__enzyme_fwddiff”(for Forward Mode) as part of any function name that is supposed to refer
to the derivative of some other function. Suppose one wants to find the derivative of function foo
from the previous code snippet, via Reverse Mode, then one has to make a call to a function
called “__enzyme_autodiff_foo(foo)” or just “__enzyme_autodiff(foo)” wherever the derivative
is needed. Enzyme recognises these calls and then replaces them with the code for Derivatives in
the LLVM IR stage.



The following code snippet shows how one can use enzyme to obtain derivatives of the function
foo:

#include <iostream>

extern double __enzyme_autodiff(void*, double);

double foo(double x) { return x * x; }

double dfoo(double x) {

// This returns the derivative of square or 2 * x

return __enzyme_autodiff((void*) square, x);

}

int main() {

for(double i=1; i<5; i++){

printf("foo(%f)=%f, dfoo(%f)=%f",i,foo(i),i,dfoo(i));

}

}

When the following code snippet is passed to the frontend of clang compiler, it generates
the LLVM IR of the code, with the function call “__enzyme_autodiff” used in dfoo. Now the
LLVM IR is passed to the enzyme program, which then replaces the “__enzyme_autodiff” used
in dfoo with the actual derivative code. The LLVM IR can be passed before optimizations or
after optimization. Now the modified LLVM IR can be passed to the LLVM Backend to obtain
the executable code.

Proposed Changes to Clad

The proposal aims to give the user an option of selecting Enzyme as the tool for AD,
instead of the clad AST method. The following code snippet will denote that the user has
requested clad to use Enzyme for calculating the Derivative/Gradient:

#include "clad/Differentiator/Differentiator.h"

#include <iostream>

double foo(double x) { return x * x; }

int main() {

// Call clad to generate the derivative of foo wrt x, but use Enzyme as

backend.



auto foo_dx = clad::differentiate<clad::opts::use_enzyme>(foo,"x");

// Call clad to generate the gradient of foo, but use Enzyme as backend

auto foo_grad = clad::gradient<clad::opts::use_enzyme>(foo);

}

A call to “clad::differentiate” or “clad::gradient” if asked to be used with Enzyme by the
user, must trigger clad to initialize the correct data structures (where the derivatives can be stored
by enzyme) and pass them to the enzyme_autodiff (for reverse mode) or enzyme_fwddiff (for
forward mode) functions, which can then be replaced with the respective AD code by Enzyme.
Thus Clad has to generate the following wrapper functions, when the user requests Clad to use
Enzyme:

extern double __enzyme_fwddiff_foo_x(void*, double);

double foo_dx_forward(double x) {

double seed[1] = {0}; //1 here represents number of params of foo

seed[0] = 1; //This sets in which direction we want the derivative, 0

represents the index of x in the list of input params of foo

// We pass the seed(direction) as well as the location at which

derivative is needed to Enzyme

auto diff = __enzyme_fwddiff_foo_x((void*) foo, x, seed[0]);

return diff;

}

extern double __enzyme_autodiff_foo(void*, double);

double foo_grad_backward(double x) {

int enzyme_dup;

double d_x[1];//Initializing data structure to store the result; 1

represents that the function has only 1 input param

//We tell Enzyme that the passed arguments are of type "Duplicated"

with the llvm metadata "enzyme_dup".

__enzyme_autodiff_foo((void*) foo, enzyme_dup, &x, &d_x[0]);

return d_x;

}

The above code must be inserted by clad so that, when the LLVM IR is generated, Enzyme can
act upon the requested functions to generate their Derivatives.



Planned Timeline
Since the exact dates are not fixed yet and are flexible, here is a 10 week timeline for the
proposed project (Tentative dates are mentioned):

Week No Tasks to be Completed

Week 1
(May 29th to
June 4th)

Explore the codebase, discuss with mentors the existing code architecture and
identify locations to be modified in the codebase. Explore associated libraries
like LLVM and Clang. Also learn about the Differentiation concepts that are
used in the code base.
Read about LLVM IR and how Enzyme works on it to generate the Derivative
of a Function.

Week 2
(June 5th to
June 11th)

[Coding Begins] Add the option of “clad::opts::use_enzyme” to the clad API.
This involves adding a state variable for every differentiation request that stores
whether the user has requested the use of Enzyme for differentiation.
Deliverable: A working code snippet that shows that clad can correctly identify
the user request for Enzyme backend and set the corresponding state variable in
the differentiation request.

Week 3
(June 12th to
June 18th)

Modify the “clad::ReverseModeVisitor::Derive” code to check if the
differentiation request asks for the use of Enzyme. If such a request is made, then
branch off from the main Derive function to generate a different code.
Deliverable: Correctly recognise that one needs to generate Reverse Mode
Enzyme code when requested by the user.

Week 4
(June 19h to
June 25th)

Continue work from Week 3, work on generating code for Reverse AD that is
enzyme compatible. Make sure the correct LLVM IR is generated for Enzyme to
work on. Deliverable: A working code snippet that uses Enzyme to generate
Gradients of a function with the interface call “clad::gradient”

Week 5
(June 26th to
July 2nd)

Write unit tests to verify that the use of Enzyme for gradient code generation
and calculation is correctly done. Deliverable: An exhaustive set of test cases
that show that clad generates the correct code, compatible with Enzyme and the
code evaluates the gradients correctly during runtime.

Week 6
(July 3rd to
July 9th)

Buffer Period, Phase 1 evaluations

Week 7
(July 10th to
July 16th)

Modify the “clad::ForwardModeVisitor::Derive” code to check if the
differentiation request asks for the use of Enzyme. If such a request is made, then
branch off from the main Derive function to generate a different code.



Deliverable: Correctly recognise that one needs to generate Forward Mode
Enzyme code when requested by the user.

Week 8
(July 17th to
July 23rd)

Continue work from Week 7, work on generating code for Forward AD that is
enzyme compatible. Make sure the correct LLVM IR is generated for Enzyme to
work on. Deliverable: A working code snippet that uses Enzyme to generate
Derivatives of a function with the interface call “clad::differentiate”.

Week 9
(July 24th to
July 30th)

Write unit tests to verify that the use of Enzyme for derivative code generation
and calculation is correctly done. Deliverable: An exhaustive set of test cases
that show that clad generates the correct code, compatible with Enzyme and the
code evaluates the derivatives correctly during runtime.

Week 10
(July 31st to
Aug 6th)

Buffer Period, Phase 2 evaluations

Personal Information

A. Basic Details

Name Manish Kausik H

Email hmanishkausik@gmail.com
mkh10@iitbbs.ac.in

Mobile Number +91 7760356001

Time Zone IST (+5:30)

Github Nirhar

University Indian Institute of Technology, Bhubaneswar

Degree B.Tech in Computer Science and Engineering and M.Tech in
Computer Science and Engineering (Dual Degree)

Year 4th year Undergraduate (2023 expected)

Availability A minimum of 20 hours per week during the coding period

Preferred slot: June - August



B. Why am I interested in this project?

Ever since I studied principles of compiler design as a part of my coursework,
I’ve always wanted to take up some project related to compiler design. During
coursework, we were taught basics of LLVM and its use in the frontend design of a
compiler. I was interested in exploring LLVM and I find this project a perfect opportunity
to study tools like LLVM and Clang.

Moreover, I also find this project interesting because I find the whole idea of
using a compiler frontend plugin to generate derivatives extremely cool! I also have an
interest in understanding scientific applications in the real world, and I am curious to
learn more about how various applications use Clad. I hope to learn more about the
activities of the scientific community at CERN, by being a part of this project.

C. My Contributions to Clad

I am relatively new to clad, and have been exploring the codebase over the past
month. Currently, I have raised 2 pull requests to solve 2 issues in Clad:

#388 Including cstring in a clad program throws errors [Solved by #398,
Accepted]

#408 Incorrect result when calling clad::jacobian wrt given parameter
[Solved by #422, Accepted]

https://github.com/vgvassilev/clad/issues/388
https://github.com/vgvassilev/clad/pull/398
https://github.com/vgvassilev/clad/issues/408
https://github.com/vgvassilev/clad/pull/422

