

GSoC 2025 Proposal

Implement activity analysis for reverse-mode

differentiation of (CUDA) GPU kernels

Mentors: Vassil Vassilev, David Lange

Contact details:
Name: Maksym Andriichuk
Email: maksym.andriichuk@icloud.com
Github: ovdiiuv
Location: Germany

Candidate’s Prior Experience

IRIS-HEP Fellow 2024:

-​ Optimizing automatic differentiation using activity analysis, mentors:
Vassil Vassilev, Petro Zarytskyi, David Lange

mailto:maksym.andriichuk@icloud.com
https://github.com/vgvassilev/clad

Motivation

GPUs and CUDA have completely changed modern computing, going far from just
rendering graphics. Now they’re a go-to thing in a variety of fields because of their
ability to handle lots of tasks at once. GPUs are great at parallel processing meaning
they can handle thousands of operations simultaneously. This makes them perfect
for things like AI, machine learning and data analysis, where they can significantly
speed up the calculations. Subsequently, modern science requires efficient tools that
are compatible with the GPU architecture.

Project Overview

In mathematics and computer algebra, automatic differentiation (AD) is a set of
techniques to numerically evaluate the derivative of a function specified by a
computer program. AD breaks down the function into elementary operations and
applies chain rule to compute derivatives of intermediate variables. It is an
alternative technique to symbolic differentiation or numerical
differentiation (the method of finite differences).

Clad is a Clang plugin designed to provide automatic differentiation (AD) for C++
mathematical functions. It generates code for computing derivatives modifying
Abstract-Syntax-Tree(AST) using LLVM compiler features. It performs advanced
program optimization by implementing more sophisticated analyses because it has
access to a rich program representation – the Clang AST. Clad supports
reverse-mode differentiation of the CUDA kernels, however it is not always optimal
because the generated code might contain the data-race conditions, significantly
slowing up the execution. Thread Safety Analysis(TSA) is a static analysis that
detects possible data-race conditions that would enable reducing atomic operations
in the Clad-produced code.

Expected Outcome

As mentioned above, we aim to remove some of the atomic operations, where we

can determine that no data-race condition occurs. In the code below:

#include "clad/Differentiator/Differentiator.h"​
​
__global__ void assign_kernel(int *out, int *in) {​
 int index = threadIdx.x + blockIdx.x * blockDim.x;​
 out[index] += in[index];​
}

// Gradient of assign_kernel

void assign_grad(int *out, int *in, int *_d_out, int *_d_in) {​
 unsigned int _t1 = blockIdx.x;​
 unsigned int _t0 = blockDim.x;​
 int _d_index = 0;​
 int index0 = threadIdx.x + _t1 * _t0;​
 int _t2 = out[index0];​
 out[index0] += in[index0];​
 {​
 out[index0] = _t2;​
 int _r_d0 = _d_out[index0];​
 atomicAdd(&_d_in[index0], _r_d0); <===>_d_in[index0] += _r_d0​
 }​
}

we use atomicAdd, since multiple threads may access _d_in[index0] at same
time. However index is injective, meaning there are no two threads that share it and
hence -- no data race. TSA would be able to detect cases like that and replace
atomic operation with corresponding non-atomic one.

Implementation details

Task 1: Implement the analyzer.

-​ Implement a structure to store the intermediate result of the analysis.
-​ Implement a ThreadSafetyAnalyzer inherited from

clang::RecursiveASTVisitor.
-​ Implement nested CallExpr handling.

Task 2: Integrate analysis to Clad codebase.

-​ Utilize the result of the analysis in shouldUseCudaAtomicOps.
-​ Investigate ways to benefit from the available analyses(Activity Analysis,

To-Be-Recorded Analysis, Dependency Analysis)

Task 3: Tests and Benchmarks

-​ Implement extensive testing to cover all Clad capabilities.
-​ Test Clad’s performance against other CUDA-supported tools with analysis

on/off

Task 4: Provide documentation
-​ Update the existing user documentation.

Timeline

Community Bonding Period

Engage with the new members in a community. Set up CUDA cloud computing service. Review the
documentation and improve if needed.

Coding period begins

Week 1-2:
27.05.2025-09.06.2025

Summarize work on sparsity patterns in
clad, write documentation, open issues if
needed. Prepare a presentation for the
weekly meeting

Deliverable: Present work on a
weekly meeting, summarizing
progress on sparsity patterns.

Week 3-4:
10.06.2025-23.06.2025

Get acquainted with Clad’s CUDA-related
codebase. Look into Clang’s parallel
computing infrastructure and read related
papers on the topic.

Deliverable: Start a blog post to
introduce the project, prepare a
presentation of the project for
the weekly meeting.

Week 5-6:
24.06.2025-07.07.2025

Implement basic ThreadSafetyAnalyzer
infrastructure. Add tests.

Deliverable: Update a blogpost
on the progress.

Week 7:
08.07.2025-14.07.2025

Buffer week. Deliverable: Prepare a
presentation for the midterm
evaluation.

Midterm Evaluations

Week 8:
20.07.2025-26.07.2025

Enable CUDA+ThreadSafetyAnalyzer
benchmarking.

Deliverable: Prepare plots for
future presentations.

Week 9-10:
27.07.2025-10.08.2025

Adjust CUDA infrastructure in Clad to use
Activity and TBR analyses. Open potential
issues.

Week 11:
11.08.2025-17.08.2025

Debug Add more tests, recompile
benchmarks with available analyses.

Week 12:
18.08.2025-24.08.2025

Buffer week. Deliverable: Update blog post
summarizing all progress.

Week 13-14:
25.08.2025-09.09.2025

Gather all data for a final presentation
showing differences in performance.
Extend the documentation.

Deliverable: Final presentation
on the weekly meeting.

Candidate’s other commitments

The only commitment other than GSoC is my studies at the Julius Maximilians
Universität Würzburg. The courses selected for the summer semester are not
challenging and do not oblige me to attend every lecture there is. Additionally the
courses have non-differentiated grading, so I would not be overloaded at the end of
the term either.

	Community Bonding Period
	Coding period begins

