
GSoC 2024 Project Proposal
CERN HSF
High Energy Physics Software Foundation

STL/Eigen: Automatic conversion and
plugins for Python-based ML-backends

Mentors
● Aaron Jomy
● Wim Lavrijsen
● Vassil Vassilev

Personal Details
Name: Khushiyant Chauhan
GitHub link: https://github.com/Khushiyant
Email: khushiyant2002@gmail.com

About Me
I am a professional working as a data scientist for a US-based company called Turing as well as
a research assistant under Dr. Swati Aggarwal (Marie Curie Fellow) at NTNU in the field of
high-performance clusters and the use of deep learning in brain signal processing. I am an

1

https://github.com/Khushiyant
mailto:khushiyant2002@gmail.com

active contributor to some open-source projects and have made some decent contributions as a
result, which are as follows (Top 3):

● Docker Python SDK (Core Contributor)
○ Implemented healthcheck start_interval as implemented in Go Engine

#3226
○ Fixed none output type in exec_run #3201
○ Fixed keyerror when creating new configuration #3200

● Unify (ML Framework Transpilation)
○ Added support for Raw Ops: Log1p #9898
○ Added support for Raw Ops: Rsqrt #9894
○ Added support for make_ndarray : function + test #9731

I have confidence in and experience with ML learning frameworks and their internal
functionalities, despite my lack of experience with C++ bindings for Python. My research on
various energy-efficient techniques (both published in peer-reviewed journals; see here) also
supports my strong grasp of mathematical concepts related to implementation.

In terms of my background in education, I am an undergraduate student in my final year at
GGSIPU (State University), majoring in computer science and engineering. I am confident that
my technical skills and experience, combined with my passion for problem solving, will make me
an asset to this project. I am excited to collaborate with and learn from the mentors and other
project contributors.

Project Details

Synopsis
Presently, Cpppy’s stl::vector is accessed by cpppy.gbl.std.vector doesn’t support
arbitrary dimensions, and there is no support for conversion mechanisms between Python
built-in types, numpy.ndarray, and STL/Eigen data structures. Cpppy is an automatic, run-time
Python-C++ bindings generator for calling C++ from Python and Python from C++. Cppyy uses
pythonized wrappers of useful classes from libraries like STL and Eigen that allow the user to
utilize them on the Python side.

We can divide the project milestones into two buckets, namely, extension & improvement of
STL/Eigen types and development & integration of some experimental plugins for JAX using
inter-conversion of types

Firstly, we plan to extend support for arbitrary dimensions for stl::vector as well as improve
the initialization approach for Eigen classes as base milestones to achieve. Simultaneously,
work on conversion utilities for various types to facilitate the support for experimental plugins,

2

https://github.com/docker/docker-py/pull/3226
https://github.com/docker/docker-py/pull/3201
https://github.com/docker/docker-py/pull/3200
https://github.com/unifyai/ivy/pull/9898
https://github.com/unifyai/ivy/pull/9894
https://github.com/unifyai/ivy/pull/9731
https://scholar.google.com/citations?user=HLDlXEsAAAAJ&hl=en

which will include convolution, multiplication, concatenation, subtraction, and addition (subjected
to change after discussion) while using CUTLASS for binding to Python API

For example, arbitary dimension support will allow processing types like <class
cppyy.gbl.std.vector<cppyy.gbl.std.vector<double>> at 0x121053940>

Implementation Details

Proposed Approach

Extend STL support for std::vectors of arbitrary dimensions

Note: All attached code samples are examples of theories to implement and require immense
changes

bool Cpppy: IsTemplate(const std::string& template_name)

{

// Existing Code

// Logic to handle std::vetor with arbitrary dimensions

Size_t pos = template_name.find("std::vector<");

If (pos != std::string::npos) {

Std::string remaining = template_name.substr(pos + 12); //

Extract the remaining string after "std::vector<"

while((pos = remaining.find("std::vector<")) != std::string::npos) {

remaining = remaining.substr(pos+12);

}

}

return False;

}

- Firstly, it would be required to modify template handling to check for nested
vector templates with different types, which would require modification in
cppyy-backend/clingwrapper/src/clingwrapper.cxx

- below code sample checks if a given template name represents a std::vector
of any dimension with a valid base type while extracting "std::vector<"
substrings.

3

- Secondly, we have handle object construct return, which would also require
modification in cppyy-backend/clingwrapper/src/clingwrapper.cxx

- Below is a code sample that handles returning the required object construct for
multi-dimensional vector (code limited to 3 dimensions)

Срруу:: TCppObject_t Cppy:: Construct(TCppType_t type, void* arena) {

// Existing code...

// Can't use recussive approach due to static nature types

if (IsVectorType(type)) {

int dimensions = GetDimensions (type); // GetDimensions has to be

defined

TCpType_t base_type = GetBaseType(type); // GetBaseType has to be

defined

if (dimensions == 1) {

return new (arena) std:: vector<base_type>;

} else if (dimensions == 2) {

return new (arena) std:: vector<std:: vector<base_type»>;

} else if (dimensions == 3) {

return new (arena) std: :vector<std:: vector<std::

vector<base_type>>>;

} else {

// Handle more dimensions...

｝

｝

// Existing code...

｝

Improve the initialization approach for Eigen classes

- Improving initialization is matter of discussion with mentors to help guide the flow,
since may be achieved by creating a usable overloaded wrapper around eigen
matrix initialization

Develop a streamlined interconversion mechanism between Python built-in-types,
numpy.ndarray, and STL/Eigen data structures

- It is required to create a utility suite for conversion between the mentioned types,
which will consist of numpy_to_stl, which converts a numpy array to an STL
vector; stl_to_numpy, which converts an STL vector to a numpy array;

4

numpy_to_eigen, which converts a numpy array to an Eigen matrix; and
eigen_to_numpy, which converts an Eigen matrix to a numpy array.

- utility suite will be accompanied by independent test suite as well as custom
Exception classes for error handling

- This suite has to rely on PyObject handling and can even be defined as
pythonized functions, e.g. __numpy__ functions or decorators

#include <vector>

#include <Eigen/Dense>

#include <numpy/ndarrayobject.h>

// Convert a numpy array to an STL vector

std::vector<double> numpy_to_stl(PyArrayObject* arr) {

int len = PyArray_SIZE(arr);

std::vector<double> vec(len);

for (int i = 0; i < len; i++) {

vec[i] = *(double*)PyArray_GETPTR1(arr, i);

}

return vec;

}

// Convert an STL vector to a numpy array

PyArrayObject* stl_to_numpy(const std::vector<double>& vec) {

npy_intp size = vec.size();

double* data = size ? const_cast<double*>(&vec[0]) : nullptr;

return (PyArrayObject*)PyArray_SimpleNewFromData(1, &size,

NPY_DOUBLE, data);

}

// Convert a numpy array to an Eigen matrix

Eigen::MatrixXd numpy_to_eigen(PyArrayObject* arr) {

int rows = PyArray_DIM(arr, 0);

int cols = PyArray_DIM(arr, 1);

Eigen::MatrixXd mat(rows, cols);

for (int i = 0; i < rows; i++) {

for (int j = 0; j < cols; j++) {

mat(i, j) = *(double*)PyArray_GETPTR2(arr, i, j);

}

}

return mat;

}

// Convert an Eigen matrix to a numpy array

PyArrayObject* eigen_to_numpy(const Eigen::MatrixXd& mat) {

int rows = mat.rows();

5

int cols = mat.cols();

npy_intp dims[2] = {rows, cols};

PyArrayObject* arr = (PyArrayObject*)PyArray_SimpleNew(2, dims,

NPY_DOUBLE);

for (int i = 0; i < rows; i++) {

for (int j = 0; j < cols; j++) {

(double)PyArray_GETPTR2(arr, i, j) = mat(i, j);

}

}

return arr;

}

Implement experimental plugins that perform basic computational operations in
frameworks like JAX

- We have to create a jax_plugins.h to provide support for JAX
framework-based computation while using CUTLASS C++ Helpers defined in
cutlass_binder.h and cutlass_binder.cxx for GEMM operations with
help of previously defined conversion_utils.cxx

- Below is a code sample illustrate the implementation of convolve_signals
functionality, which is using CutlassMatMul helper, which is implemented using
CUTLASS GEMM

C++ Code:

#include <Eigen/Dense>

#include <vector>

std::vector<double> convolve_signals(const std::vector<double>& a,

const std::vector<double>& b) {

Eigen::VectorXd a_eigen = Eigen::Map<const

Eigen::VectorXd>(a.data(), a.size());

Eigen::VectorXd b_eigen = Eigen::Map<const

Eigen::VectorXd>(b.data(), b.size());

// Perform the convolution using Eigen vectors

int result_size = a.size() + b.size() - 1;

Eigen::VectorXd result_eigen(result_size);

result_eigen = CutlassMatMul(a_eigen, b_eigen); // Assuming

CutlassMatMul is defined elsewhere

// Convert the result back to a std::vector

std::vector<double> result(result_eigen.data(),

6

result_eigen.data() + result_eigen.size());

return result;

}

Python Calling Code:

import jax.numpy as jnp

import cppyy

cppyy.include('path/to/cpp/file')

cppyy.load_library('path/to/compiled/library')

def convolve_signals(a, b):

Convert the inputs to std::vectors

a_std = cppyy.gbl.std.vector['double'](a)

b_std = cppyy.gbl.std.vector['double'](b)

Perform the convolution using the C++ function

result_std = cppyy.gbl.convolve_signals(a_std, b_std)

Convert the result back to a numpy array

result = jnp.array([result_std[i] for i in range(len(result_std))])

return result

Integrating plugins with toolkits like CUTLASS that utilise the bindings to provide a
Python API

- Since CUTLASS provide high-performance GEMM, which could be used by JAX
plugins to perform certain operation with help of conversion_utils.cxx, this
will require a well-thought-out process

- example of basic matrix multiplication can be seen in below code sample

// my_cutlass_code.h

#include <cutlass/numeric_types.h>

#include <cutlass/core_io.h>

#include <cutlass/cutlass.h>

std:: vector<std:: vector<int>CutlassMatMul(const

std::vector<std::vector<int>>& a, const

std:: vector<std: :vector<int>>& b) {

// Use CUTLASS to perform matrix multiplication

// This is a simplified example; actual usage of CUTLASS would be more

complex

std:: vector<std:: vector<int>> result = ...; // Compute result using

7

CUTLASS

return result;

}

- Later, it can be used in developing JAX plugins by including and using its GEMM
capabilities:

import cpppy

cpppy.include('cutlass_code.h')

- This would kindly follow the below depicted code execution

8

Expected Usages after completion

Benefits and deliverables

The community will benefit from the following factors after project deliverables:
- stl:vector will have robust support for arbitrary dimensions
- Decent improvement in Eigen class initialisation
- Conversion utilities to handle inter-package types conversion, which is even more

useful and beneficial in future plugin development and interaction

9

- Support of some basic experimental plugins for frameworks that could be useful
in future enhancements

- interaction of these plugins with CUTLASS will help in Python API binding

Changes Required

The following changes to the code will be required (assumed):
- Modification in cppyy-backend/clingwrapper/src/clingwrapper.cxx to

handle templating and object construction
- Addition of conversion_utils.cxx to CPyCppyy to handle interconversion

mechanism between Python buil-tin-types, numpy.ndarray, and STL/Eigen
data structures

- Addition of jax_plugins.h to provide basic experimental computation tasks for
JAX framework

- addition of cutlass_binder.h and cutlass_binder.cxx as C++ function
helper to provide support for GEMM in JAX plugins

Timeline of the project

Community Bonding Period

Month 0:
01.04.2024-26.04.2024

Engage with the community. Establish regular meetings with the
mentors. Set up the development environment and add Cutlass
and Eigen libraries to codebase

coding period begins.

Week 1
27.05.2024-02.06.2024

Modifications to template handling and object construction to
facilitate arbitrary dimensions for vectors

Deliverable: Added logic handling to
cppyy-backend/clingwrapper/src/clingwrapper.cxx
in bool Cppyy::IsTemplate(const std::string&
template_name) and Cppyy::TCppObject_t
Cppyy::Construct(TCppType_t type, void* arena)

Week 2
03.06.2024–10.06.2024

Brainstorm Eigen Class Initialization Improvement Techniques
and final format, e.g. an overload wrapper around Eigen
initialization

10

Week 3 - Week 4
11.06.2024-25.06.2024

Implementation of decided improvement technique for eigen
initialization

Deliverable: Overload Wrapper around for Eigen Initialization in
cpppy/python

Week 5 - Week 6
26.06.2024-08.07.2024

Implementation of conversion utilities suite along with unit tests,
respectively

Deliverable: Added support for conversion utils between Python
builtin-types, numpy.ndarray, and STL/Eigen data structures via
added conversion_utils.py in cpppy/python

Week 7
9.07.2024-12.07.2024

Add unit tests for conversion utils into current stl and eigen test
suites

Deliverable: tests_conversion_utils.py to cover added
utility functions

Midterm Evaluations

Week 8:
12.07.2024–19.07.2024

Brainstorm the implementation of JAX plugins and CUTLASS
GEMM operations

Week 9:
20.07.2024-27.07.2024

Implementation of basic GEMM operations using CUTLASS to act
as base for JAX plugin helpers

Deliverable: Support for GEMM operations helpers via added
cutlass_code.h and its source file

Week 10 - Week 11:
28.07.2024-10.08.2024

Implementation of JAX plugins, which will include operations like
convolution, addition, subtraction, and multiplication, with support
for multiple types

Deliverable: Added file jax_plugins.h to facilitate support for
some basic experimental computations with help of
conversion_utils.cxx and cutlass_code.h

Week 12:
11.08.2024-18.08.2024

Buffer Week

Week 13:
19.08.2024–26.09.2024

Extended testing, developing documentation, and presenting the
work.

Deliverables: test cases, demonstrated reduction of the binary
sizes, blog post about the achieved results, presentation at the
compiler-research.org team meeting.

11

Why CERN-HSF?
Actually, I have been in research since the very start of college, and CERN, being the pinnacle
of research, has always been a place that I want to experience. Consequently, I applied for
Summer Student Program but didn’t get any response so for me, GSoC is way to atleast work
with best of mentors in CERN and learn something from them

Commitments During Summer
I have been working as data scientist at company called Turing, which has very flexible
arrangement so I would be able to commit at least 30-35 hours per week towards this project

Preferred medium of communication
I’m perfectly fine with any means of communication, including direct mailing lists, and am open
to weekly or biweekly meetups to streamline communication. I’m perfectly comfortable using
English as medium of communication

12

