
Enable automatic differentiation of
OpenMP programs with Clad

Mentors
●​ Vassil Vassilev
●​ David Lange

Contact
Name: Jiayang Li
Time Zone: UTC+8 (Shanghai)
Email: lijiayang404@gmail.com
Github: Errant404

Synopsis
Clad is an automatic differentiation (AD) clang plugin for C++. Given a C++ source code of a
mathematical function, it can automatically generate C++ code for computing derivatives of
the function. Clad is useful in powering statistical analysis and uncertainty assessment
applications. OpenMP (Open Multi-Processing) is an application programming interface
(API) that supports multi-platform shared-memory multiprocessing programming in C, C++,
and other computing platforms.

This project aims to develop infrastructure in Clad to support the differentiation of
programs that contain OpenMP primitives.

Implementation Details

Determining the Scope of OpenMP Primitives Support
OpenMP includes many directives, which we categorize into high-priority and low-priority
groups based on general expectations and typical usage.
To further refine and validate this categorization, we plan to review OpenMP-related
simulation codes, such as ParFlow, to extract real-world usage patterns of OpenMP
directives.

mailto:lijiayang404@gmail.com
https://github.com/Errant404

This analysis will help ensure that our implementation priorities are aligned with practical
needs.

●​ High-priority primitives (initial selection):
○​ #pragma omp parallel for,
○​ #pragma omp reduction,
○​ #pragma omp critical,
○​ #pragma omp atomic

●​ Low-priority primitives:
○​ #pragma omp sections,
○​ #pragma omp barrier,
○​ #pragma omp task

Parsing OpenMP Directives
Enhance Clad’s ASTVisitor to capture nodes such as OMPParallelForDirective,
enabling recognition and parsing of common OpenMP directives.

Variable Scope Analysis and Handling
Differentiate shared variables (shared), private variables (private), and reduction
variables (reduction), generating corresponding differential variable mappings.

●​ Create thread-local copies for private variables.
●​ Synchronize gradient updates for shared variables (e.g., using atomic operations).
●​ Maintain the reduction logic in gradient computation for reduction operations.

OpenMP Directive Handling Strategy
For the automatic differentiation of OpenMP parallel code, we consider two computation
strategies: Forward Mode and Reverse Mode, drawing inspiration from Enzyme’s handling of
fork/sync transformations at the LLVM level.

●​ Forward Mode: Generate differential "forward" code corresponding to the original
function within each OpenMP parallel region. If intermediate values need to be stored
(e.g., for subsequent reverse mode computations), thread-local storage should be
used within each thread.

●​ Reverse Mode: Reverse the control flow. For example, fork operations in forward
mode correspond to sync operations in reverse mode. Additionally, the local
gradients from each thread must be correctly reduced to shared variables. This
approach is similar to Enzyme’s fork/sync transformation at the LLVM level.

During implementation, I will further discuss with my mentors and refer to existing tools (such
as Enzyme) to ensure a reasonable and efficient approach to OpenMP directive automatic
differentiation.

Related Work
Through extensive research, the currently available automatic differentiation tools that
support OpenMP include:

●​ Tapenade (performs source-to-source transformation)
●​ Enzyme (works at the LLVM IR level)

In the actual development process, the above open source projects and the following papers
may provide valuable reference or help.

●​ Source-to-Source Automatic Differentiation of OpenMP Parallel Loops
●​ Scalable Automatic Differentiation of Multiple Parallel Paradigms through Compiler

Augmentation

Timeline

Community Bonding Period

May 8 - June 1 ●​ Gain an in-depth understanding of the
code structure and logical details of the
Clad project.

●​ Clarify the specific handling strategies for
various OpenMP primitives, preferably
documented through tests or written
documentation. Reference can be made to
other projects that support OpenMP
automatic differentiation, such as Enzyme.

●​ Try to develop a basic infrastructure to
parse and respond to pragma-based
differentiation requests, serving both as a
technical exploration and a practical
starting point for developing broader
pragma-based infrastructure in Clad.

●​ Discussing these aspects and
implementation details with the mentor to
ensure the correctness of the
implementation logic.

Coding Period

Week 1
(June 2 - June 8)

Complete AST capture for OpenMP directives.
Deliverable: Enhanced OpenMP pragma
handling support

Week 2,3
(June 9 - June 22)

Support for basic OpenMP parallel directives.
Deliverable: Automatic differentiation support for
OpenMP parallel and for directives.

Week 4
(June 23 - June 29)

Complete variable scope analysis for OpenMP
directives.​
Deliverable: Automatic differentiation support for

https://gitlab.inria.fr/tapenade/tapenade
http://enzyme.mit.edu/
https://doi.org/10.1145/3472796
https://doi.org/10.1109/SC41404.2022.00065
https://doi.org/10.1109/SC41404.2022.00065

OpenMP directives with shared and private
variables.

Week 5
(June 30 - July 6)

Support for reduction directives in forward
mode.
Deliverable: Automatic differentiation support for
OpenMP reduction directives.

Week 6
(July 7 - July 13)

Buffer time.

Week 7
(July 14 - July 20)

Midterm evaluation.

Week 8
(July 21 - July 27)

Add support for atomic operations, critical
sections, etc in forward mode.
Deliverable: Comprehensive support for
high-priority primitives in forward mode.

Week 9,10
(July 28 - August 10)

Reverse mode.
Deliverable: Reverse mode support for all
previously implemented features.

Week 11
(August 11 - August 17)

Finalize testing.
Deliverable: Comprehensive and well-developed
test cases with high code coverage.

Week 12
(August 18 - August 24)

Document writing
Deliverable: README content, tutorials, and
documentation related to the OpenMP usage of
Clad.

Week 13
(August 25 - August 31)

Buffer time.

Why Me?
I am a third-year student majoring in Computer Science at Shanghai University. As an
open-source enthusiast, I have contributed to many open-source projects.
I participated in OSPP 2024, a program similar to Google Summer of Code (GSoC), which
has made me familiar with GSoC's timeline.
I have extensive experience in the field of High-Performance Computing (HPC), making me
proficient in the OpenMP programming model. Additionally, I have a solid understanding of
the principles of automatic differentiation.
Currently, I also have a PR merged into Clad, which demonstrates my strong ability to get
started with the project and my thorough understanding of it.

https://summer-ospp.ac.cn/2024/org/prodetail/24f3e0162
https://github.com/vgvassilev/clad/pull/1291

Candidate’s Other Commitments
The postgraduate recommendation system in China allows top undergraduate students to be
admitted to master's programs without taking the national entrance exam, with the selection
process typically occurring from September to October. Since I am considering pursuing a
master's degree, this might overlap with the GSoC timeline, as I may take some universities'
on-site written tests and interviews from June to September. However, I believe it won’t take
up too much of my time. In fact, I am applying for GSoC precisely because I expect to have
some free time during this period.

Why GSoC with Clad project in CERN HSF ?

I am interested in this project not only because I see it as a great opportunity to improve my
programming skills and showcase my abilities but also because I deeply admire CERN.
Even before my undergraduate studies, I had a strong passion for both physics and
computer science. Although I eventually chose computer science as my major, my
enthusiasm for physics has never faded. My active involvement in the field of HPC is a
testament to this, as it represents the perfect way to combine my two greatest academic
interests.

For someone like me, who is passionate about physics, CERN is nothing short of romantic.
The thought that I might, in one way or another, contribute to the software used in CERN
projects excites me immensely.

	Enable automatic differentiation of OpenMP programs with Clad
	Mentors
	Contact
	Synopsis
	Implementation Details
	Determining the Scope of OpenMP Primitives Support
	Parsing OpenMP Directives
	Variable Scope Analysis and Handling
	OpenMP Directive Handling Strategy

	Related Work
	Timeline
	Why Me?
	Candidate’s Other Commitments
	Why GSoC with Clad project in CERN HSF ?

