Garima Singh
Manipal Institute of Technology, Manipal
garimasingh0028 @gmail.com

Mentors:

Vassil Vassilev
vvasilev@cern.ch

Alexander Penev
alexander penev@yahoo.com

Add numerical differentiation
support in Clad

GSoC 2021

Introduction

In mathematics and computer algebra, automatic differentiation (AD) is a set of techniques
to numerically evaluate the derivative of a function specified by a computer program.
Automatic differentiation is an alternative technique to Symbolic differentiation and
Numerical differentiation (the method of finite differences). Cladw is based on Clang which
provides the necessary facilities for code transformation. The AD library can differentiate
non-trivial functions, find a partial derivative for trivial cases, and has good unit test
coverage. In several cases, due to different limitations, it is either inefficient or impossible
to differentiate a function. For example, Clad cannot differentiate declared-but-not-defined
functions. In that case, it issues an error. Instead, clad should fall back to its future
numerical differentiation facilities.

Overview

A brief introduction to numerical differentiation

Numerical differentiation is a technique widely used by smaller computational machines
such as scientific calculators to estimate the derivatives of input functions. Usually, these
implementations are one of the variants below:

Method of Finite Differences:

mailto:garimasingh0028@gmail.com
mailto:vvasilev@cern.ch

Forward difference:
For a function f(x), the derivative f'(x) would be defined as follows:

fOx+ h)—=f(x)
h

f'(x) = lim

Backward difference:

Following the same notation, the derivative becomes the following:

f(x)—f(x—h)
h

,J' Fl
x) = lim
f.() h—0
Central Difference:
Following the same notation, the derivative becomes the following:

fOx+h)=f(x=h)
2h

f'6) = lim

Implementation of the above methods is simple and straightforward, however, the only
difficult part is choosing the correct step size (i.e. h). Choosing a larger value for h may
result in grossly overshooting the derivative estimate while choosing a very small value for
h may lead to a very large rounding error due to the difference. For basic central
differences in double precision, the optimal value for h is the cube-root of the machine
epsilon(e) . For forward and backward difference, a formula that balances both of the step
size errors is as follows:

For single-precision calculations, another big issue is the exact representation of either x +
h or x. The big connotation of that is the denominator difference will not be exactly
equivalent to h, making the derivative estimate suffer.

A possible solution is to explicitly store the independent values and use the difference of
those as the denominator as opposed to just h, an example is given below:

h := sqgrt(mach eps) * x;
xph := x + h;
dx := xph - x;

slope := (F(xph) - F(x)) / dx;

Again, we must make sure that this code section is free of lossy compiler optimizations.
One way to ensure this in Cis to make xph volatile.

Clad and numerical diff

As the project problem statement suggests, first we would want to add a dedicated
interface for numerical differentiation (let's call it c1ad: :num diff). This would not be
any different from clad: :gradient or clad: :differentiate. This dedicated interface
allows users to utilize Clad’'s numerical-diff abilities stand alone. This way we also open up
avenues to add more numerical diff support to Clad in the future.

The next step would be to generate code of the function derivative in the case that Clad can
not derive it. Ideally, Clad replaces the definition of the function to be differentiated (say
func) with its derivative (say func_darg0) whose body is not null. However, in the case
that Clad cannot differentiate the function, it emits a warning and returns a null derivative
body. One way to avoid this is by replacing the null body with the following:

double func_dargd(double x) {
return clad::NumericalDiff::centralDifference(func);

Wherein, NumericalDiff isthe namespace that defines the derivative estimation
methods and centralDifference (func) is the function evaluated at runtime which
essentially returns the result from the equation mentioned here.

Another possible approach is to emit the direct formula into the function derivative as
illustrated below:

double func_dargd(double x) {
return (func(x + clad::NumericalDiff::step) - func(x)) /
clad: :NumericalDiff::step;

}

However, the former approach is far better than the latter in the sense of uniformity and
ease of addition of different numerical diff methods. For Clad to operate in the latter mode,
we would either need to prewrite each method or somehow figure out a way to generate
code for different methods on the fly.

Errors and numerical diffs

Since derivatives resulting from numerical methods are mere estimates, it becomes
important to know the expected error in the result we provide. The error in the simple
forward difference formula is roughly comprised of two types of errors:

1. Theoretical/Truncation Error

This error stems from the fact that numerical differentiation uses approximation
(like a linear approximation of the Taylor series in finite difference methods) and
hence is not the most accurate. Estimating the theoretical error is fairly simple, and
for the forward difference method, it can be derived by power series expansion as

follows:
fle+h)— f@) fl@)+ (@) -h+ ") 5+~ f(x)
h o h
—r@+ T e Ly

For small values of h the error can be approximated to:

f"(x)
y h

For a more rigorous bound to the truncation error, we can say the following:

R} — h
fla+ :‘ f({])| < Emaxxe[n,mh] UCH(X”

E(f;a, h) =If'(a) -

2. Round-off Error

Due to the nature of computing, choosing a very small value of h (h -~ 0) may result
in rounding errors. One case of round-off errors may beif x + h ~ x,in that case,
the numerator of the finite difference method becomes 0. That might also be the
case if there are floating-point errors in the function itself (here we can make a case
of how error estimation is important for even finding numerical derivatives) leading
to either incorrect differences or even catastrophic cancellation. There are two main
ways to mitigate these errors.

The first one is to select an appropriate value for h such that the roundoff errors are
minimized (mentioned in the previous sections). For the forward/backward
difference method, we can expect to get a precision of about no. of precision
bits / 2.Forthe central difference method, we can expect to get a precision of
about 2 * no. of precision bits / 3.

The second one is to select some other method to approximate the derivative so
that we can get more significant digits. A few of which are mentioned in the
following sections.

Therefore, summarizing results from this section, we can come to a strict upper bound for

the error in the value of the estimated derivative as follows:s

h 1 2€m
Emﬂxxe[u,ﬂ+h] IF ()| + Tmﬂxxe[u,a-l-h] [F(x)I

Higher-order and complex derivatives

Higher-order differentiation methods are also vital for Clad. There are two aspects to
higher-order derivatives, first is higher order methods to approximate the first derivative
(covered in later sections) and the second is approximating higher derivatives. We can
easily extend the definition of the finite difference method to show the following:

Z(-l)k[z)f(x + (n—2k)h)

k=0

1
(2h)"

ffn} ~

However, this method is usually not the method of choice because of high truncation and
roundoff errors for higher derivatives (n > 4). A few other methods with higher accuracy
and convergence are mentioned in the following sections.

Another interesting place to look into derivatives is complex-valued derivatives; wherein
one can state the following:a

J(f(x +1ih))

f@) = =55

This method provides an accuracy of order 2 (O(h?)) and is an obvious better choice as
opposed to the vanilla finite difference method. However, this method might prove difficult
to implement due to the fact that complex types are not primitive in C/C++ and hence to
achieve something like this we have to rewrite the source to accept complex inputs.

Other methods

Higher order methods:

Higher order methods promise higher accuracy as the order increases. These derivatives
are “longer” (meaning they are truncated at a later order in the Taylor series) and hence
possess lower truncation error. Coefficients of this method can be calculated via simple

linear algebra given the sample points; an example of a higher order method for
calculating the first derivative with a standard five-point stencil is given below:

—flx + 2h) + 8f(x + h) — 8f(x — h) + f(z — 2h)
12h

fi(z) =

Implementation of this method in Clad should be fairly simple; we can easily pre-store the
coefficients for standard stencils and avoid the overhead of matrix multiplication/ other
linear algebra operations. However, that will limit the diversity in stencils that can be used
and the order of the method.

Cauchy’s Integral Formula:

A simple and effective way to generalize calculation of higher order derivatives is done
using Cauchy’s integral formula as given below:

fra)= 2mi Jy (z—a)™*! dz

Where the integral is calculated numerically. Calculation of numerical integrals might pose
as an unwanted addition to Clad, however, it might be necessary to employ such methods
to be able to get higher order derivatives with acceptable error bounds. The feasibility of
implementation of this method in Clad may be experimented with.

Richardson Extrapolation:

This method improves the accuracy of the central difference method. It is a recursive
method, with the accuracy of the estimated derivative increasing at every evaluation. The
relation for a function f(x) is defined below:

o 4nD'm,_ﬂ—l - Dm—l,n—l

D'TFL n T

* 4n 1

Where,
_ fleth) = flz—h)

Dua 2h

And,
p. . - S+ hi2) - [z —hf2)
1.0 —

Which is very similar to the central difference formula; here n refers to the method and m
refers to different multipliers for h (h, = h/2"). Given the high rate of convergence, this

method is definitely a contender for implementation, moreover, this method may be
extended to estimate higher derivatives with a satisfactory accuracym.

A popular computational engine, WolframAlpha, uses this method to numerically estimate
derivative values.a

Miscellaneous

Non-scalar differentiation:

As of writing of this proposal, Clad does not possess the ability to differentiate non-scalar
types such as arrays, matrices or tensors. Numerical differentiation of such types is
possible and fairly simple to implement. An example of numerically differentiating a
function that takes a non-scalar input (arrays here) is as follows:

f;(arr) = [DD, Dl, Dz, vy Dn]

Where:
flarry) —f(arr)
h;

E':

and arr; is the array with a modification of arr[i] += h;.

This formula of forward finite difference can easily be extended to non-scalar types of
higher dimensions too. This feature can be used as a fallback in Clad whenever
differentiation with respect to a non-scalar type is requested.

Another interesting thing to note is that one can differentiate virtually any user-defined
scalar (or even in some cases non-scalar) type using numerical differentiation as long as we
are aware of a suitable step size and the basic arithmetic operations on it are well defined.

Error propagation for accurate estimates:

From the conclusions in this section, we can say that if we are aware of the floating-point
errors in the function to be differentiated, we can easily substitute those in for the 2 ¢,

term in the numerator of the round-off error. Hence giving us more accurate estimates of
the error in the calculated derivatives. This however introduces an overhead of generating
the error estimation code and may only be feasible in the case that the floating-point errors
are significantly large.

Goals

1. Implement numerical differentiation support in Clad. It will be available through a
dedicated interface.

2. Develop a prototype of configurable error estimation for the numerical
differentiation.

Personal Information

Basic Details:

Name: Garima Singh

Email: garimasingh0028@gmail.com

Mobile Number: +91 626 300 8121

Time Zone: India (UTC +5:30)

Github: grimmmyshini

University: Manipal Institute Of Technology

Major: Information Technology

Current Year: 3rd-year Undergraduate (2022 expected)
Degree: Bachelor of Technology

Availability: throughout the coding period

Technical Experience:

| am a part of my university’'s official Al and robotics student project -- Project Manas,
whose primary vision and mission are to build a fully autonomous car suited for Indian
road conditions. At project Manas, my primary work involved feature addition and
optimization of existing open-source software. As such, | am fairly comfortable with
working with abstract ideas and quickly adapting to foreign codebases. | have also worked
significantly with mathematics-heavy algorithms such as developing a modified version of
an Iterative Closest Point matching algorithm that utilized semantic information from a
deep neural net backend (this work was undertaken during my internship at a prominent
robotics startup in India -- Swaayatt Robots).

In addition to the above, | am also working on developing an error-estimation framework
using Clad, details of which can be found here. Because of this, | have significant knowledge
of the codebase and am well acquainted with the different modules and their
interoperability. | have been contributing to the project since December 2020 and all my
commits can be found here.

Motivation;

Having worked with Clad before, | am aware of the areas which require improvement. This
proposal will greatly add to improving the robustness of Clad and will also open new
opportunities in the field of error-estimation and lossy-compression. If this project meets

https://projectmanas.in/
http://www.swaayatt-robots.com/
https://iris-hep.org/assets/pdf/garima_proposal.pdf
https://github.com/vgvassilev/clad/graphs/contributors

completion, clad will not only become more resilient to differentiation failures but may also
be used to replace hand-derived code as-is in analysis and simulation software (one such
example software is ROOT). Numerical differentiation may also be used to cross-verify the
derivatives generated by Clad and their resultant granularity may be analyzed.

Timeline

Phase 1| June 7™ -July 16"

Week 1: Investigate different methods in numerical differentiation and discuss
possible implementation design.

Week 2: Code up different methods and test out their feasibility and correctness.
This week will mostly involve integrating the numerical diff functionality as a fail-safe
for forward mode differentiation. | will mostly be integrating basic methods here,
the more complex ones will be added later on.

Week 3: Take this week out to write up a few preliminary tests and work on the
documentation. This task may be completed in a few days, so the rest of the days
will serve as a buffer for work from the previous week.

Week 4: Start working on an interface for numerical differentiation so that it can be
used standalone.

Week 5: Continue on the work from the past week. This week may also be used as a
buffer for debugging.

Phase 2 || July 16™- Aug 23"

Week 6: Analyse the estimation results and build a small module that tracks the
error in the calculated values.

Week 7: Inspect complex variable methods, see if they can be extended to
differentiate complex types. Also, use this time as a buffer for finishing work from
past weeks.

Week 8: This week is saved for research on other methods, one prominent class of
methods to look into here might be iterative methods since they are much more
stable than other numerical methods.

Week 9: Prepare demos and tests. Take this week to work on documentation and
patch missing features if any.

Week 10: week saved to prepare reports/presentations on the work done. May also
use this as a buffer to finish up the work from previous weeks.

https://root.cern/
https://encyclopediaofmath.org/wiki/Differential_equation,_partial,_complex-variable_methods

References

[1] Vassilev, Vassil, Penev, Alexander, & Shakhov, Roman. (2020). Error estimates of
floating-point numbers and Jacobian matrix computation in Clad. Zenodo.
http://doi.org/10.5281/zenodo.4134097

[2] Sauer, Timothy (2012). Numerical Analysis. Pearson. p.248.

[31 ND—Wolfram Language Documentation
[4] https://people.clas.ufl.edu/kees/files/NumericalDifferentiation.pdf

[5] https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h10/kompendiet/
Chapter 11

[6] Shilov, George. Elementary Real and Complex Analysis.

[7] Strom, T., Lyness, J.N. On numerical differentiation. BIT 15, 314-322 (1975).
https://doi.org/10.1007/BF01933664

[8] Lyness, J. N., and C. B. Moler. “Numerical Differentiation of Analytic Functions.” SIAM
Journal on Numerical Analysis, vol. 4, no. 2, 1967, pp. 202-210. JSTOR,
www.jstor.org/stable/2949389. Accessed 10 Apr. 2021.

https://reference.wolfram.com/language/NumericalCalculus/ref/ND.html
https://people.clas.ufl.edu/kees/files/NumericalDifferentiation.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h10/kompendiet/
https://doi.org/10.1007/BF01933664

