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Project Overview

In mathematics and computer algebra, automatic differentiation (AD) is a set of

techniques to numerically evaluate the derivative of a function specified by a

computer program. Automatic differentiation is an alternative technique to Symbolic

differentiation and Numerical differentiation (the method of finite differences). Clad

is based on Clang which provides the necessary facilities for code transformation. The

AD library can differentiate non-trivial functions, find a partial derivative for

trivial cases, and has good unit test coverage. In several cases, due to different

limitations, it is either inefficient or impossible to differentiate a function. For

example, clad cannot differentiate declared-but-not-defined functions. In that case,

it issues an error. Instead, clad should fall back to its future numerical

differentiation facilities.

Project Objectives

Add numerical differentiation support for forward mode.

Add numerical differentiation support for reverse mode.

Provide numerical differentiation through a dedicated interface.

Provide error estimates for the numerical differentiation.

Final Results

PR (Merged): https://github.com/vgvassilev/clad/pull/261

Initial Stage

The main aim of the project was to be able to have a backup plan in case clad fails to

differentiate a given function call expression. Since clad is a source transformation

tool, source visibility is a very important aspect of whether clad can differentiate a

function call or not. Earlier, the only way for clad to differentiate functions whose

source was not visible (i.e. external library functions) was through having the user

define a custom derivative by hand. Even though clad does cover a lot of the

frequently used math functions and provides in-built custom derivatives for the same,

there is still a large blindspot for clad in terms of these invisible  functions. One

of the ways to overcome this was simply defining a numerical differentiation function

as follows:

template <typename F> double central_difference(F f, double x) { 

    // A simple 2 point central difference numerical method here.     

}

This was the initial idea of the implementation and this is also a very similar way of

how numerical differentiation is implemented in libraries like gnu gsl and boost.

However, as we can see, this heavily limits the kind of functions that can be

differentiated. A list of the "eligibility" criteria of a function to undergo

numerical differentiation is listed below:

Functions with single arguments (or equivalent).

https://github.com/vgvassilev/clad/pull/261
https://github.com/ampl/gsl
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/diff.html


Function with arguments that can be converted to a double . This means

functions with user-defined types as inputs are largely not supported.

Function with scalar inputs only, which means no arrays or pointer types (even

to built-in base types).

Current Stage

The project’s current state eliminates all of the problems faced above by heavily

using templates and parameter packs. We currently provide two interfaces packaged in a

single template header file which allows uses to easily use the provided functions as

standalone, without any extra link dependencies. The two interfaces and their usage

are mentioned as follows:

forward_central_difference  - The numerical differentiation function which

differentiates a multi-argument function with respect to a single argument

only. The position of the argument is specified by the user or Clad. This

interface is mainly used in clad's forward mode for call expressions with

single arguments. However, it can easily be extended for jacobian-vector

products as well. The signature of this method is as follows:

template < typename F, typename T, typename... Args> 

  precision forward_central_difference(F f, T arg, std::size_t n, bool printErrors, 

Args&&... args){ 

    // Here as you can tell, we have enough type generality that we can accept  

    // functions with a variety of input types. 

    // Here: 

    // f(args...) - is our target function. 

    // n - is the position of the parameter with respect to which we want a 

derivative. 

    // printErrors - A flag to enable printing of error estimates. 

}

central_difference  - The numerical differentiation function which

differentiates a multi-argument function with respect to all the input

arguments. This function returns the partial derivative of the function with

respect to every input, making it a suitable candidate to use in clad's reverse

mode. The signature of the method is as follows:

template <typename F, std::size_t... Ints, 

            typename RetType = typename clad::return_type<F>::type, 

            typename... Args> 

  void central_difference(F f, clad::tape_impl<clad::array_ref<RetType>>& _grad, bool 

printErrors, Args&&... args) { 

    // Similar to the above method, here: 

    // f(args...) - is our target function. 

    // grad - is a 2D data structure to store all our derivatives as 

grad[paramPosition][indexPosition] 

    // printErrors - A flag to enable printing of error estimates. 

}

Since we use some math  functions for numerical differentiation, we have to link

against the library. To avoid this and give the users a choice not to enable numerical

differentiation, we have the functionality to define a macro CLAD_NO_NUM_DIFF  at the

target program's compile time.



How it works behind the scenes:

Before we can get a gist of how things work, let us look at the general formula for

calculating derivatives of a function f . In clad we use the five-point stencil

method, but for simplicity we assume the vanilla central difference method here:

df/dxi = (f(..., xi + h, ...) - f(..., xi - h, ...)) / (2 * h)

the above formula gives a good estimate of the partial derivative of f  with respect

to xi. Now what remains is to see how this comes together in code.

So we have one main function that comes into play:

// This function basically enables us to 'select' the correct parameter to update. 

// Without this function, we will not be able to figure out which x should be updated 

to x ± h. 

template <typename T> 

T updateIndexParamValue(T arg, std::size_t idx, std::size_t currIdx, int multiplier, 

precision& h_val,...) { 

    if (idx == currIdx) { 

        // selects the correct ith term. 

        // assigns it an h_val (h) 

        // and returns arg + multiplier * h_val essenially. 

    } 

    return arg; 

  }

Here, Idx  is the current parameter we are on and currIdx  is the parameter we want

to differentiate with respect to in this pass. If the indices do not match, we return

the argument unchanged.

Now, we apply this function to all the arguments in our args  parameter pack and

forward the same to our target function f .

fxh = f(updateIndexParamValue(args, indexSeq/*integer index sequence for the parameter 

pack,  

                Args allows us to give an index to each parameter in the pack.*/, 

                i /*index to be differentiated wrt*/, 

                /*±1*/, 

                h/*we expect this to be returned*/, 

                /*other params omitted for brevity*/)...);

The above line results in the calculation of f(..., xi ± h, ...). Finally the whole

algorithm for calculating gradient of a function is as follows:

for each i  in args , do:

fx1 := f(updateIndexParamValue(args, idexSeq, i, 1, h, /*other params*/)...)

fx2 := f(updateIndexParamValue(args, idexSeq, i, -1, h, /*other params*/)...)

grad[i][0] := (fx1 - fx2)/(2 * h)

end for

Challenges/Objectives Achieved

https://en.wikipedia.org/wiki/Five-point_stencil


We achieved some really interesting results that are enumerated below:

Differentiating multi-arg function calls with minimum code duplication

Due to the use of templates, we were able to write concise code to implement both

forward and reverse numerical difference functions.

Differentiating calls with pointer/array input

A big problem with non-scalar inputs such as arrays or vectors is that they are

implicitly pass-by-reference, which means that may not be reusable as input to the

same function and are expected to result in the same output. Since numerical

differentiation by clad requires a function to be executed at least 4*num_arguments ,

we have to make a copy of the non-scalar input and use that to pass to the function

instead. The way we achieved this is by implementing a simple memory buffer manager

that is responsible to allocate and free temporary memory allocated for this purpose.

Use case:

A potential use case here would be differentiating tensors or structures such as

queues/linked lists/stacks. Taking an example: suppose we want to support

differentiating a linked-list input, we would have to overload the

updateIndexParamValue  as follows:

MyLinkedList* updateIndexParamValue(MyLinkedList* arg, std::size_t idx, std::size_t 

currIdx,  

int multiplier, precision& h_val, std::size_t  n = 0, std::size_t  i = 0) { 

    if (idx == currIdx) { 

        // Malloc n pointers of type MyLinkedList using BufferManager. Connect them 

all together. 

        // copy all values from arg to temp. 

        temp.copy(arg, n);  

        // Now get the ith value 

        MyLinkedList* val = temp.getAtPos(i); 

        // update the data 

        val->data += multiplier * h_val; 

        // Return the copy. 

        return temp; 

    } 

    return arg; 

  }

Differentiating user-defined types

Another significant issue that clad does not currently handle is user-defined types.

In the standalone mode, we can tackle both scalar (structs, classes, etc.) and non-

scalar (struct arrays/pointers, etc.) user-defined data types. We provide a function

that can be specialized by the user for their data type. These specialized functions

will then tell clad how the user-defined data type has to be differentiated.

Use case: An interesting use case for this can be numeric types that have custom

implementations or are 'concealed' in a way. That means, we can handle things such as:

// Essentially a typedef over double but cannot be implicitly 

// converted to double.

struct MyDouble { 



    double x; 

};

Or more complex things such as fixed-length floating-point numbers (eg. java's

BigInteger). Another interesting example handling such a case is described in a demo

here.

Lightweight dedicated interface

The standalone numerical diff interface is very lightweight and consists of only a

single header file. Since we currently have very low dependence on clad, it is super

easy to port these codes.

Printing of error estimates

Since numerical differentiation is a way to estimate the derivative, it is essential

to keep track of any associated errors. Users can choose to enable printing of error

estimates for numerical differentiation calls in clad using a command-line flag. Doing

so will enable the printing of error information on standard output.

Related future work: These estimates may also be propagated further through the

function to see what kind of effects they have on the final output. They may also be

coupled with clad's floating-point error estimation framework to get interesting

insights into the stability of functions. Issue #295 tracks the progress for this.

Roadblocks

The roadblocks faced during development as listed as below:

Developing a general interface

The biggest roadblock of this project was probably how to build a generic interface

that could differentiate functions with any signature. We wanted the interface to be

simple and central enough that users could use it standalone. There was discussion on

multiple design choices we could have taken but most of them seemed to either be very

elaborate or very specialized.

Handling pass-by-reference input arguments

Pass-by-reference arguments may be modified by the function and hence may result in

that modification propagating into other function calls for numerical differentiation.

Hence it became necessary to pass on a clone of these arguments each time a function

call is requested. This also implied that we had to have a way to manage memory that

was independent of type. We achieved this by creating a BufferManager  that allocates

and destroys memory related to those objects. As of now, we can only handle allocating

types that are trivially destructible.

Miscellaneous Contributions

I was able to make a few miscellaneous contributions to clad which included major

memory leak fixes and general improvement on clad.

You can find all my created PRs and issues here.

Conclusions

I was able to complete the major objectives set by the project mentors. In the

process, I was also able to further my knowledge in the field of computational

https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
https://github.com/vgvassilev/clad/blob/4f1c10e7d9237d4929822fa6e1074dfe377e4ec6/demos/CustomTypeNumDiff.cpp
https://github.com/vgvassilev/clad/issues/295
https://github.com/vgvassilev/clad/issues?q=author%3Agrimmmyshini+is%3Aopen+


mathematics, compilers and improved my coding skills.
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