
Syntax Forge

Code Completion in Clang Repl

Developers : Yuquan (Fred) Fu (Computer Science, Indiana University)

Mentor : Vassil Vassilev (Princeton University/CERN)

GSoC Project Proposal

Slides of the First Talk @ CaaS Meeting

Slides of the Second Talk @ CaaS Meeting

Github : capfredf

I will give a talk on this topic at LLVM Developers’ meeting 2023.

Overview of the Project

Clang-Repl, featuring a REPL(Read-Eval-Print-Loop) environment, allows

developers to program in C++ interactively. It is a C++ interpreter built upon the

Clang and LLVM incremental compilation pipeline. One of the missing upstream

features in Clang-Repl is the ability to propose options for automatically

completing user input or code completion. Sometimes, C++ can be quite wordy,

requiring users to type every character of an expression or statement.

Consequently, this causes typos or syntactic errors. For example,

clang-repl> class HelloMyFirstClassThatHasAReallyLongName{}
clang-repl> new H<cursor>

Syntax Forge https://www.syntaxforge.net/clang-repl-cc/

1 of 5 11/1/23, 4:45 PM

https://www.syntaxforge.net/clang-repl-cc/
https://www.syntaxforge.net/clang-repl-cc/
https://summerofcode.withgoogle.com/proposals/details/fvAuNKTx
https://summerofcode.withgoogle.com/proposals/details/fvAuNKTx
https://summerofcode.withgoogle.com/proposals/details/fvAuNKTx
https://compiler-research.org/assets/presentations/CaaS_Weekly_14_06_2023_Fred_Code_Completion_in_ClangREPL.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_14_06_2023_Fred_Code_Completion_in_ClangREPL.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_14_06_2023_Fred_Code_Completion_in_ClangREPL.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_30_08_2023_Fred-Code_Completion_in_ClangRepl_GSoC.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_30_08_2023_Fred-Code_Completion_in_ClangRepl_GSoC.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_30_08_2023_Fred-Code_Completion_in_ClangRepl_GSoC.pdf
https://github.com/capfredf
https://github.com/capfredf
https://discourse.llvm.org/t/2023-us-llvm-dev-mtg-progam/73029
https://discourse.llvm.org/t/2023-us-llvm-dev-mtg-progam/73029
https://discourse.llvm.org/t/2023-us-llvm-dev-mtg-progam/73029

Currenctly, users need to type all the rest of thirty-eight letters. However,

armed with a code completion system, users will be able to either complete the

input if there is only one completion result or see a list of valid completion

candidates. Furthermore, the code completion should be context-aware, and it

should provide semantically relevant results with respect to the current position

and the input on the current line, as opposed to showing all the symbols in the

current namespace. The problem is demonstrated by the example below

If users hit the <tab > key at the indicated position, listing all symbols would

be distracting. It is easy to find out that among all declarations, only c1 , c2

and s are well-typed candidates. So an ideal code completion system should

be able to filter out results using type information.

The project leverages existing components of Clang/LLVM and aims to provides

context-aware semantic completion suggestions.

My Approach

The project mainly consists of two patches. The first patch involves building

syntactic code completion based on Clang/LLVM infrastruture. The second

patch goes one step further by implementing type directed code completion.

Pull Request : D154382

Highlights

1. In the submitted patch, we have multiple iterations to integrate the new

clang-repl> struct Vehicle{};
clang-repl> struct Car : Vehicle{};
clang-repl> struct Sedan : Car{};
clang-repl> void moveCar(Car &c){};
clang-repl> Vehicle v;
clang-repl> Car c1, c2;
clang-repl> Sedan s;
clang-repl> c.move(<tab>

Syntax Forge https://www.syntaxforge.net/clang-repl-cc/

2 of 5 11/1/23, 4:45 PM

https://reviews.llvm.org/D154382
https://reviews.llvm.org/D154382

components with the existing infrastructure while not reinventing the wheel.

For each code completion, we create a special AST unit called ASTUnit with

the current input and invoke its method ASTUnit::codeComplete with a

completion point to do the heavy-lifting job.

2. Sema/CodeComplete* are a collection of modules in Clang that play an central

role in code completion. We added new completion contexts so the

Sema/CodeComplete* can provide correct completion results for the new

declaration kind that Clang-Repl uses model statements on the global scope.

The underlying reason is that in a regular C++ file, expression statements are

not allowed to appear at the top level. Therefore, Sema/CodeComplete* would

exclude invalid completion candidates for expression statements, which are

nonetheless common inputs at the REPL.

3. Sema/CodeComplete* assume the input is an intact source file or AST context

by default. Because a new compiler instance is created whenever code

completion is triggered, Sema/CodeComplete* would not be able to see all

declarations defined by previous inputs in the same REPL session. The

solution is to construct an ExternalASTSource with ASTContext s from both

the code completion and main compiler instances, and use that

ExternalASTSource as the external source of the code completion’s

ASTContext . Code completion invokes

ExternalASTSource::completeVisibleDeclsMap , where we import decls from the

main ASTContext to the code completion ASTContext .

Demo

Syntax Forge https://www.syntaxforge.net/clang-repl-cc/

3 of 5 11/1/23, 4:45 PM

Future Work

Pull Request : D159128

The type-directed code completion is still a work in progress. It was developed

based on an early version of the patch submitted. With this feature, code

completion results are further narrowed down to well-typed candidates with

respect to completion points. Here is a screecast:

Conclusion & Acknowledgments

The journey has been incredibly thrilling. I have honed my C++ skills and delved

into Clang/LLVM with a focus on interactions of components responsible for

parsing. Thanks to everything I learned from the project, I feel confident in

Syntax Forge https://www.syntaxforge.net/clang-repl-cc/

4 of 5 11/1/23, 4:45 PM

https://reviews.llvm.org/D159128
https://reviews.llvm.org/D159128

© 2023 Syntax Forge Powered by Hugo & PaperMod

becoming a better Clang/LLVM contributor and compiler hacker.

Last but not the least, I would like to express gratitude to my mentor Vassil for

his many valuable discussions and feedback regarding the patch. His guidance

ensured the project procceeded smoothly. Without him, I would have not been

able to complete the project in a timely manner.

Syntax Forge https://www.syntaxforge.net/clang-repl-cc/

5 of 5 11/1/23, 4:45 PM

https://www.syntaxforge.net/clang-repl-cc/
https://www.syntaxforge.net/clang-repl-cc/
https://gohugo.io/
https://gohugo.io/
https://github.com/adityatelange/hugo-PaperMod/
https://github.com/adityatelange/hugo-PaperMod/

