
GSOC 2023

Autocompletion in Clang-REPL
Yuquan (Fred) Fu (yuqfu@iu.edu)

Mentor: Vassil Vassilev

Introduction

Inspired by Cling, an LLVM/Clang-based interpreter developed for the scientific data analysis
framework ROOT, Clang-REPL is a C++ interpreter built upon Clang and LLVM incremental
compilation pipelines. It features a REPL, i.e., read-eval-print-loop, so that developers can
program in C++ interactively.

Currently, the input support of Clang-REPL is primitive, and advanced editing features are
lacking. One of them is Auto-completion. Users need to type every symbol of an expression or
statement. The process is tedious and error-prone.

[clang-repl] class HelloMyFirstClassThatHasAReallyLongName{}

[clang-repl] new HelloMyFirstClassThatHasAReallyLongName()

For the purpose of demonstration, in the code above, we first define a class whose name has
thirty-nine letters. We need all thirty-nine keystrokes to invoke the constructor to create an
instance. We could resort to copy-and-paste, but it would break the coding workflow.

Our goal is to develop robust auto-completion in Clang-REPL with upstream components from
Cling.

Motivation
Auto-completion is a nice-to-have, or even must-to-have, feature in modern day-to-day software
development. Support of robust auto-completion in Clang-REPL will be a step forward in
exploratory programming in C++.

mailto:yuqfu@iu.edu


First, it will assist users in avoiding laborious typing that is likely to lead to accidental typos. For
example,

[clang-repl] class HelloMyFirstClassThatHasAReallyLongName{}

[clang-repl] new H_

// _ denotes the cursor

Instead of typing all the rest of thirty-eight letters, the user can press <tab>, and then a list of
candidates including `HelloMyFirstClassThatHasAReallyLongName` will show up.

Secondly, the auto-completion should only provide well-typed candidates. Let us take a look at
an example.

```
[clang-repl] struct Pear{int m;};
[clang-repl] struct Apple{ void foo(Apple& other){}};
[clang-repl] Pear c, d;
[clang-repl] Apple a, b;
[clang-repl] a.foo(_);
// _ denotes the cursor
```

When the user press <tab>, a naive implementation would provide all bound identifiers in the
current namespace. However, since a.foo is a method whose parameter type is Apple& , the
candidates should be narrowed down to a and b.

Furthermore, candidate filtering should respect subtyping relations. In the following example, we
define a structure named Car, its superclass Vehicle, and its subclass RedApple.

[clang-repl] struct Vehicle{};

[clang-repl] struct Car : Vehicle{void crash(Car& other){}};

[clang-repl] struct Sedan : Car{};

[clang-repl] Vehicle v;

[clang-repl] Car c1, c2;

[clang-repl] Sedan s;

[clang-repl] c.move(_);

// _ denotes the cursor

When <tab> is pressed, the list of candidates that pops up should include only c1, c2, and s.
Lastly, the auto-completion should take scopes into consideration. Let us continue our example
with Pear and Apple.



[clang-repl] void bar(Apple& a1, Apple& a2){ some.foo(_)}

[clang-repl] b.foo(_)

At the first completion site, the candidates should include a1 and a2 along with a and b. On the
contrary, only a and b will be provided at the next completion site.

Implementation Plan
● Port necessary modules, classes, and functions from cling/lib/UserInterface/textinput/

to Clang-REPL to handle the <tab> key event.
● Port lib/Interpreter/ClingCodeCompleteConsumer from Cling to Clang-REPL
● Design and Implement a prototype of type-directed Completion in Clang-REPL

○ Implement a class that serves a type environment to keep track of the bindings
and their types.

■ This includes all classes, their methods, functions, and global variables
imported via #include

■ All the classes, their methods, functions, and variables created in an
ongoing REPL session.

○ Add a candidate filter based on type information from a type environment.

Timeline

Week 1 (Coding Begins):
Start porting Cling’s auto-completion infrastructure to Clang-REPL.
Deliverables:

1. Port Keybinding.[h/cpp], StreamReader.[h/cpp], StreamReaderUnix.[h/cpp], Callbacks.h,
History.[h/cpp], Reader.h, Editor.[h/cpp],Range.[h/cpp], SignalHandler.[h/cpp],
TerminalDisplay.[h/cpp], TerminalDisplayUnix.[h/cpp], TerminalConfigUnix.[h/cpp]

2. Write tests for classes and functions defined in the files above.

Week 2:
Start porting Cling’s auto-completion infrastructure to Clang-REPL.
Deliverables:

1. Possibly finish the remainder of the last week’s week.
2. Port TextInput.[h/cpp], TextInputContext.[h/cpp]
3. Port the class UITabCompletion from UserInterface.[h/cpp] to Clang-REPL.
4. Port ClingCodeCompleteConsumer.[h/cpp] to Clang/lib/interpreter.cpp.



5. Write tests for classes and functions defined in the files above.

Week 3:
Buffer week for the previous work

Week 4:
Start designing and implementing type-directed auto-completion. Discuss the design plan with
the mentor.
Deliverable:

1. Wrote a design document demonstrating how the subsystem works internally and with
the auto-completion system.

Week 5
Implement type contexts for the type-directed auto-completion system.
Deliverables:

1. Implement the class TypeContext to keep track of bindings and their types. Type
representations use classes from llvm:Type

2. Write a function, extractBindingAndType, to obtain the valid binding and its type from an
AST. The result is put into the TypeContext.

3. Write tests from the class TypeContext, the function extractBindingAndType

Week 6
Buffer week for the previous work

Week 7
Integrate the TypeContext class and the function extractBindingAndType with the completion
system.

Deliverables:
1. Put extractBindingAndType in a proper place in UserInterface to gather bindings and

their type information from user input.
2. Add a function, typeOfAt, to get a type related to the cursor's current position.
3. Add a filter function to filter valid candidates based on the result type of typeOfAt and

TypeContext.
4. A preliminary type-directed auto-completion in Clang-REPL.



Week 8
Buffer week for the previous work.

Week 9
Improve type-directed auto-completion with subtyping.

Deliverables:
1. Implement a function subtype that checks if the first argument is a subtype of the

second argument.
2. Integrate the function into the completion system.

Week 10
Buffer week for the previous work.

Week 11
Polish the patch and submit it to the LLVM project for review.

Deliverables:
1. A ready-to-be-reviewed patch
2. A submission to the LLVM project

Week 12
Change the code per reviewers’ suggestions. This process may go on for more than one week.

Week 13
Wrap up the project

Deliverables:
1. Improve the documentation
2. Write a blog post about the work
3. Prepare a presentation.



About Me
Yuquan (Fred) Fu is a Ph.D. student specializing in programming languages. He primarily works
on type systems for Typed Racket and other gradually typed languages under Dr. Sam
Tobin-Hochstadt. He is an open-source enthusiast who has been long wanting to learn and
contribute to LLVM and Clang. Coming from Racket, where the REPL plays a central role, He
believes Clang-REPL is an excellent starting point for his LLVM/Clang contribution journey.

Availability
I can start as soon as the project is announced.
Usually, I can work for 20 hours per week.
I am on eastern time (UTC -4), and I am responsive and reachable by email and other tools the
team and mentor use.


