
IMPROVING 
AUTOMATIC 
DIFFERENTIATION 
OF 
OBJECT-ORIENTED 
PARADIGMS USING 
CLAD
Daemond



WHAT WE ACHIEVED

Pitch Deck 2

• Enhanced the clad object-oriented differentiable model by 
incorporating non-differentiable attributes.

• Introduced support for reference return types in clad's reverse 
mode.

• Upon facilitating the reference return type, we also activated 
operator overloading in both forward and reverse modes.

• Enabled user-defined derivative functions for operator overloads.



WHAT WE ACHIEVED

Pitch Deck 3

• https://github.com/vgvassilev/clad/pull/568

• https://github.com/vgvassilev/clad/pull/605

• https://github.com/vgvassilev/clad/pull/601(complete, waiting to be 
merged)

• https://github.com/vgvassilev/clad/pull/619(complete, will be 
rebased on PR601)



• NON-DIFFERENTIABLE ATTRIBUTES.

Pitch Deck 4

• non_differentiable is an attribute that marks specific fields or methods in a class, 
indicating they should not be differentiated.

• Here, the product method in the SimpleFunctions class has been tagged with 
this attribute, signifying that any differentiation tools or routines should bypass 
or ignore this method.



• NON-DIFFERENTIABLE ATTRIBUTES.

Pitch Deck 5



• NON-DIFFERENTIABLE ATTRIBUTES.

Pitch Deck 6

• When applied to a class, it suggests that differentiation tools should bypass or 
ignore all of its fields and member functions. 



• OPERATOR OVERLOADS

Pitch Deck 7

• The above example demonstrates the differentiation of operator overloads using 
clad. 

• A crucial enhancement added is the support for operators with reference return 
types, such as the operator+= in the SimpleFunctions class. 



• REFERENCE RETURN TYPE

Pitch Deck 8

• A crucial enhancement added is the support for operators with reference return 
types, such as the operator+= in the SimpleFunctions class. 

• We introduce a “_forw” function for reference return type.



• REFERENCE RETURN TYPE

Pitch Deck 9

• In the above example, we can easily point _d_a_ref to _d_a because the 
derivative of a is known at compile time. This is not always the case, for 
example, consider the following code.



• REFERENCE RETURN TYPE

Pitch Deck 10

• We cannot determine which variable ref is referencing at compile time. 
Thus, we also cannot determine which derivative should _d_ref refer to.

• That’s why we need “_forw” function.



• REFERENCE RETURN TYPE

Pitch Deck 11



• REFERENCE RETURN TYPE

Pitch Deck 12

• The corresponding someFn_forw will be:



• CUSTOM DERIVATIVES FOR SPECIAL MEMBER FUNCTIONS 

Pitch Deck 13

• The code showcases user-defined derivatives for operator overloads, allowing for custom 
differentiation behavior. 

• By employing the clad::custom_derivatives namespace, users can specify custom derivatives 
for operators like operator+=, tailoring differentiation to specific class implementations.



MISSING SUPPORT FOR CPP FEATURE

Pitch Deck 14

• Suppoer try-catch blocks to enable some std namespace functions differentiation.

• Support switch statements in the reverse mode. 

• Support special member functions like constructors in both the forward and the 
reverse mode.

• Support custom derivatives for special member functions.



THANK YOU!

Pitch Deck 15


