
Project Proposal, 2024

Enable reverse-mode automatic
differentiation of (CUDA) GPU kernels
using Clad

Organization:
Cern-HSF

Mentors: Parth Arora, Vassil Vassilev

Contact details:
Christina Koutsou
GitHub: @kchristin22
E-mail: christinakoutsou22@gmail.com
Phone number: +30 6985033663

https://github.com/kchristin22/
mailto:christinakoutsou22@gmail.com

1. Project

1.1. Abstract
Nowadays, the rise of AI has shed light into the power of GPUs. The notion of
General Purpose GPU Programming is becoming more and more popular and it
seems that the scientific community is increasingly favoring it over CPU
Programming. Consequently, implementation of mathematics and operations
needed for such projects are getting adjusted to GPU’s architecture.
Automatic differentiation is a notable concept in this context, finding applications
across diverse domains from ML to Finance to Physics. Clad is a clang plugin for
automatic differentiation that performs source-to-source transformation and
produces a function capable of computing the derivatives of a given function at
compile time. This project aims to widen Clad’s use range and audience by
enabling the reverse-mode automatic differentiation of CUDA kernels.

1.2. Current State
Currently, Clad supports differentiation of __device__ functions. These functions
can be accessed by the host (CPU) only through invoking kernels. This example
from test/CUDA/GradientCuda.cu showcases the typical interaction of CPU and
GPU:

__device__ __host__ double gauss(double* x, double* p, double

sigma, int dim) {

double t = 0;

for (int i = 0; i< dim; i++)

t += (x[i] - p[i]) * (x[i] - p[i]);

t = -t / (2*sigma*sigma);

return std::pow(2*M_PI, -dim/2.0) * std::pow(sigma, -0.5) *

std::exp(t);

}

__global__ void compute(double* d_x, double* d_p, int n, double*

d_result) {

auto gauss_g = clad::gradient(gauss, "p");

gauss_g.execute(d_x, d_p, 2.0, n, d_result);

}

int main(void) {

(...) // memory allocations and initializations

compute<<<1, 1>>>(d_x, d_p, N, d_result);

cudaDeviceSynchronize();

// copy back result to CPU

cudaMemcpy(result.data(), d_result, N * sizeof(double),

cudaMemcpyDeviceToHost);

return 0;

}

It is evident, however, that instead of creating a helper kernel to derive gauss, we
could declare it as a kernel instead and, since the derived function keeps the
same attributes as the original one, we could launch the derived kernel directly.
Thus, the expected result would instead look like this- omissions have been
made here, see Implementation for the suggested additions:

__global__ void gauss(double* x, double* p, double sigma, int dim,

double result) {

double t = 0;

for (int i = 0; i< dim; i++)

t += (x[i] - p[i]) * (x[i] - p[i]);

t = -t / (2*sigma*sigma);

std::pow(2*M_PI, -dim/2.0) * std::pow(sigma, -0.5) *

std::exp(t);

}

int main(void) {

(...) // memory allocations and initializations

auto gauss_g = clad::gradient(gauss, "p");

gauss_g.execute(d_x, d_p, 2.0, n, result, d_result);

cudaDeviceSynchronize();

// copy back result to CPU

cudaMemcpy(result.data(), d_result, N * sizeof(double),

cudaMemcpyDeviceToHost);

return 0;

}

In other words, the total goal of the project is to support the differentiation of
CUDA kernels that may include typical CUDA built-in objects (e.g. threadIdx,
blockDim etc.), that are employed to prevent race conditions, using Clad.

1.3. Implementation

This project can be broken down into two main categories:
● General support: The ability to produce and execute a kernel’s derivative

function without it necessarily being correct
○ Produce the derived kernel during compilation
○ Execute the aforementioned function as a kernel
○ Produce the derived kernel when it’s being called inside a function

to derive
○ Execute the call to the derived kernel when it’s being called inside a

function to derive
● Support of kernel’s nature: Derive the kernel with respect to its

characteristics
○ Kernels are void functions and, as a result, we cannot derive based

on a return statement
○ Kernels are executed by multiple threads and, thus, we need to

account for write race conditions when computing the final result
○ Kernels usually use CUDA built-in objects and features

General support: Kernel’s derivative compilation

What differentiates CUDA kernels from device or host functions is that they
cannot be called without a provided grid configuration to be used. Hence, any
call to them should be accompanied by such an expression. These invocations
can occur in two different cases:

● During creation of derivative kernel
● Kernel execution

Since the original function is not called during the computation of its derivative,
any calls to it are the user's responsibility, which falls outside the scope of Clad.
That leaves us with the derived function. In order to grasp where the
differentiation of kernels fails, it is beneficial to study Clad’s workflow.

The arrows indicate the order of execution. It's apparent that in reverse mode, the
derived function is generated within ReverseModeVisitor::Derive(), and at
some point, this kernel is invoked upon its return, or, in other words, a
clang::CallExpr* is created. Upon closer examination, it becomes evident that
the error that is currently preventing the kernel derivation stems from
clang::Sema::ActOnCallExpr(). Internally, this function triggers
BuildCallExpr(), resulting in the creation of a CallExpr. To fix the error, the
following changes are proposed:

● In VisitorBase::BuildCallExprToFunction():
○ Detect if the function that was derived is a kernel function:

If (FD->hasAttr<CUDAGlobalAttr>())

○ If true:
■ Create a configuration expression of (grid size, block size,

shared memory size, stream ID) = (1,1,0,0) (in order to be called
once) using ActOnCUDAExecConfigExpr()

■ Assign it to configExpr

○ Else:

configExpr = nullptr;

○ Pass the configuration expression as an argument to
ActOnCallExpr():

call = m_Sema
.ActOnCallExpr(
getCurrentScope(),
/*Fn=*/exprFunc,
/*LParenLoc=*/noLoc,
/*ArgExprs=*/
llvm::MutableArrayRef<Expr*>(argExprs),
/*RParenLoc=*/m_Function->getLocation(),
/*ExecConfig=*/configExpr)
.get();

The configuration settings applied here should not influence the actual
execution of the kernel later on.

General support: Kernel’s derivative execution

For the latter category of kernel invocation, after its creation, the API can be
extended to include an overload function of execute() to which the user can
pass the configuration parameters as arguments. These arguments will in turn
pass through an overload of execute_helper() and subsequently execute_with
_default_args(). Since CUDA supports the use of variables (both static and
dynamic) in its configuration, the latter function will be modified like so:

To prevent misuse of this capability, assert() statements will be added to ensure
that these functions are being used only on kernels.

return

f<<<grid_size,block_size,shared_mem_size,stream>>>(static_cast

<Args>(args)..., static_cast<Rest>(nullptr)...);

General support: Derivation of a kernel call

To further enhance the support for kernel differentiation, we should ensure that
deriving a function that includes a kernel invocation can successfully call the
derived kernel. Thus, when the CUDAKernelCallExpr is visited during the top
level of derivation, we should store its configuration to use for the pullback kernel
call. Specifically, a Visit function for kernels calls will be written, that mimics the
one used for typical CallExpr nodes. However, it will additionally include storing
the specified configuration using getConfig() on the kernel node and then
passing it to the creation of the pullback kernel call expression through
clang::Sema::ActOnCallExpr().

Support of kernel’s characteristics: Specify output argument to derive

As far as support of kernel’s internal nature goes, it's important to consider that
kernels are void functions and, consequently, their output is provided as an
argument.

__global__ void kernelExample(int *in, int *out);

Hence, Clad needs to be able to compute and export the derivative of a
parameter with respect to another one. For this purpose, the API must once again
be updated to include an overload of gradient() that allows the user to specify
the output variable of a void function. Similarly to the previously mentioned
extension, an assert() statement will ensure that the function is used to derive
void ones, not necessarily kernels this time.

gradient(F f, ArgSpec args = "", ArgSpec retArg = "",

DerivedFnType derivedFn =

static_cast<DerivedFnType>(nullptr),

const char* code = "") {

assert(f && "Must pass in a non-0 argument");

if(!std::is_same<void, return_type_t<F>>::value &&

retArg != "")

assert(0 && "Ret arg is only supported for void

functions");

return CladFunction<DerivedFnType, ExtractFunctorTraits_t<F>,

true>(derivedFn /* will be replaced by gradient*/, code);

}

DiffRequest will now have an extra class member for the output argument and
be assigned the second argument of gradient():

request.ReturnArg = E->getArg(2); // nullptr or specified arg

Currently, the argument to be used for the function differentiation along with the
one that represents the function derivative value with regard to it (e.g. a and _d_a)
are stored in a map named m_Variables in ReverseModeVisitor::Derive(). It's
important to clarify that this map isn't utilized for creating the parameters of the
derived function. Instead, its purpose is to identify which expressions are worth
differentiating. As a result, we can freely modify it and append the output
parameter and its derivative, upon creating it.
In more detail, if this argument is specified, then when the request is processed in
ReverseModeVisitor::Derive(), the original function’s parameters are scanned
to find the one with the same name. If none is found, meaning the user gave an
invalid parameter name, then an error is returned and the compilation fails. Else,
the m_Variablesmap is updated.

if (request.ReturnArg) {

auto E = request.ReturnArg->IgnoreParenImpCasts();

// Store param name that represents the result of the void

// function call

if (auto SL = dyn_cast<StringLiteral>(E)) {

llvm::StringRef retParamName = SL->getString().trim();

auto fArgs = m_Function->parameters();

auto it = std::find_if(std::begin(fArgs), std::end(fArgs),

[&retParamName](const ParmVarDecl* PVD)

{

return PVD->getName() ==

retParamName;

});

if (it == std::end(fArgs))

diag(

clang::DiagnosticsEngine::Error, noLoc,

"Return argument not found in the list of independent

variables");

else{

// create output's derivative equivalent variable using

// getParamType of iterator `it` and

// CreateUniqueIdentifier,

// append to m_Variables

m_RetParamName = retParamName; // store output var name

}

}

}

Afterwards, within DifferentiateWithClad(), this variable is tracked and
initialized to 1 (df/df = 1).

if (m_Variables.count(param)) {

if (m_RetParamName == param->getName()) {

auto size_type = m_Context.getSizeType();

unsigned size_type_bits =

m_Context.getIntWidth(size_type);

auto* one = IntegerLiteral::Create(m_Context,

llvm::APInt(size_type_bits, 1),

m_Context.IntTy, noLoc);

auto* left = param->getType()->isPointerType()

? BuildOp(UO_Deref, m_Variables[param])

: m_Variables[param];

addToBlock(BuildOp(BinaryOperatorKind::BO_Assign, left,

one), m_Globals);

}

continue;

}

This way, when the AST Nodes of the original kernel are visited, expressions that
include the output argument on the left-hand side will be correctly derived. The
final result, though, will be stored in the derivative variable that shares the same
name as the parameter with respect to whom the function was derived.

An example of the above is depicted below:

void foo(int *in, int *out){

*out = 2 * *in;

}

// reverse pass:

// da = dout

// din = 2 * da (or else din = 2 * dout)

void foo_grad(int *in, int *out, clad::array_ref<int> _d_in) {

* _d_out = 1;

int _t0;

_t0 = *out;

*out = 2 * *in;

{

*out = _t0;

int _r_d0 = * _d_out;

* _d_out -= _r_d0;

* _d_in += 2 * _r_d0;

}

}

Support of kernel’s characteristics: Account for write race conditions in
computation of the derivative value

To also account for the multithreaded environment of a kernel, the final result
should be assigned its value and not ordered to add it to itself in
ReverseModeVisitor::VisitDeclRefExpr(). As a result, if more than one thread
executes an operation to the memory address of where the result will be stored,
they will all execute the same assignment. To make it more clear, the above
example would be modified like so:
* _d_in += 2 * _r_d0; —> * _d_in = 2 * _r_d0;

To further check the validity of this change for other cases as well, let’s consider
the example:

__global__ void compute(double *in, double *out, double val)

{

int index = threadIdx.x;

out[index] = in[index] + val;

}

In case, _d_out[index] is not initialized evenly among its indexes and we derive
with regard to val, _d_val will suffer from a write condition. Hence, a better and
more complete solution would also include a track of the array’s subscript that
corresponds to the output variable (return argument of the void function), if it’s
indeed denoted as an array, and build an array subscript expression for the
_d_val with the same index to use in the assign operation.

Overall, the new version would look like:

void compute_grad(double *in, double *out, double val,

clad::array_ref<double> _d_in, clad::array_ref<double> _d_out,

clad::array_ref<double> _d_val) __attribute__((global)) {

int _d_index = 0;

double _t0;

int index0 = threadIdx.x;

_t0 = out[index0];

out[index0] = in[index0] + val;

{

out[index0] = _t0;

double _r_d0 = _d_out[index0];

_d_out[index0] -= _r_d0;

_d_in[index0] += _r_d0;

* _d_val[index0] = _r_d0;

}

}

On the same note, if the original kernel includes a for loop, then Clad uses its
own implementation of a FILO queue, called a tape, to store useful values during
derivation. Since these tapes are locally defined, the multithreaded environment
will not affect their proper function. Hence, no change should be needed
regarding them. However, tests will be conducted to ensure this is the case in
every situation.

Support of kernel’s characteristics: Handling of CUDA built-in objects

Another common characteristic of CUDA kernels is the use of built-in objects, e.g.
threadIdx, as depicted above, to ensure that each thread computes its own
share of the final result. These nodes should only be cloned when visited in the
global initializations and be treated as integers when differentiated, or in other
words their derivatives should be 0. In addition, support for the shared memory
macro must also be included in the project’s scope, by not discarding it when
visiting a variable or array declaration.

1.4. Testing and documentation
For every new feature added in Clad, the test folder must be updated to ensure
that each one has been tested thoroughly in a range of cases. Clad’s CI chain
also includes code coverage tests that help meet the above requirement.
For documentation purposes, demo examples of how to use Clad with CUDA will
be written with typical use cases of automatic differentiation as kernels, e.g. cost
functions in ML, the Navier-Stokes equations etc.

2. Timeline

Below is a timetable for the project implementation, including deliverables and
milestones:

Note: All the tasks are described in detail in the Implementation section and are
only briefly referenced here

Duration Tasks

Community Bonding Period

May 2 - May 5

Meet mentors, learn about the team’s meetings
and way of work, fix local debugger, go through
the documentation and submit improvements if
necessary
Deliverable: Write a blog post to introduce myself
to the community, prepare a short presentation of
the project and the plan of action for its
implementation, fix reported bugs

May 6 - May 12

Discuss the project with mentors, add
configuration expression in derivative kernel’s
creation
Deliverable: Kernels are differentiated without a
compilation error

May 13 - May 19

Add configuration in overloaded execute function
of CladFunction object
Deliverable: Kernels can be called for execution
with a configurable grid

May 20 - May 26

Add simple test based on the example in
GradientCuda.cu
Deliverable: Verified general support of kernel’s
derivative compilation with Clad

Coding Period 1

Week 1.
May 27 - June 2

Add ability to specify the output argument of a
void function in the API and store its name in the
ReverseModeVisitor
Deliverable: Return argument can be specified by
the user only in void functions and be read by the
lower level of Clad

Week 2.
June 3 - June 9

Add this parameter to m_Variables map to derive
any expression that includes it and initialize it to 1
Deliverable: Expressions that include the output
argument are derived

Week 3.
June 10 - June 16

Change add-assign operation of the final result to
Clad’s return argument that stores the value of the
function’s derivative (not only in void functions)
Deliverable: Multithreaded functions don’t face
write race condition when the initialization of the
function’s derivative output is even

Duration Tasks

Week 4.
June 17 - June 23

Track the indexes of the output argument’s array
used and appoint the final value to the same index
of Clad’s return argument
Deliverable: Write race conditions are taken into
account for any function and the result is written to
an appropriate position of the return argument

Week 5.
June 24 - July 7

Write tests for the above, including ones where the
function is a kernel, and identify any loopholes in
the implementation
Deliverable: Increasing coverage of function cases
that may use a parallel computing API

Week 6.
July 1 - July 7

Update tests already included in Clad and update
README on user guidelines to access the
derivative value
Deliverable: Verified support for any function, void
or not, that may be called by multiple threads

Midterm Evaluation

Week 6.
July 8 - July 12

Add support for CUDA built-in objects: threadIdx,
blockIdx, blockDim and gridDim

Coding Period 2

Week 6.
July 13 - July 14

Add support for CUDA built-in objects: threadIdx,
blockIdx, blockDim and gridDim when assigned to
a variable
Deliverable: Kernels that include CUDA built-ins
regarding its grid, are correctly derived

Week 7.
July 15 - July 21

Write tests for the above
Deliverable: Verified support of CUDA built-in
objects that refer to the grid configuration when
they’re assigned to a variable

Week 8.
July 22 - July 28

Ensure that CUDA built-ins that are used directly
as an array subscript are correctly cloned and
tracked
Deliverable: All cases of CUDA built-ins’ usage are
thought of and implemented

Week 9.
July 29 - August 4

Write tests for the above
Deliverable: Verified support of CUDA built-in
objects that refer to the grid configuration however
they’re used

3. Personal details

3.1. About me
I’m a 5-th year student pursuing a degree in ECE with an integrated master’s in
Aristotle University of Thessaloniki, Greece. During my studies, I have been
involved in multiple projects which helped me narrow down my interests as I
progressed. One of the courses that impacted me the most was the one on
Parallel Programming, where I implemented three projects of scientific
applications using a different tool for each. In the first two projects I utilized APIs
used for parallel and distributed programming in CPUs (pthreads, OpenMP,
OpenCilk and MPI), while the third one was in CUDA and centered around

Duration Tasks

Week 10.
August 5 - August 11

Add support of __shared__ macro
Deliverable: The derived kernels of original
kernels that employ the shared memory of a block
also use the shared memory in the same manner

Week 11.
August 12 - August 18

Write tests for the above
Deliverable: Verified support of differentiation of
CUDA kernels that use the shared memory

Week 12.
August 19 - August 25

Add support for kernel call derivation when they’re
inside a host function to be derived
Deliverable: Support of kernel pullback function
creation (kernels can be derived directly and
indirectly)

Week 13.
August 26 - September 1

Write tests for the above
Deliverable: Verified support for kernel call
derivation and generation

Week 14.
September 2 - September

8

Discuss with mentors and Research use cases to
implement in CUDA and Clad, that point to
additional built-ins of CUDA worth supporting
Deliverable: Prepare a short technical report to
present findings and suggestions

Week 15 - 22.
September 2 - October 31

Period dedicated to writing demos and additional
support. Project Finalization.
Deliverable: Verified correct derivation of multiple
CUDA kernels using Clad

simulating the Ising model on a cellular automaton (all the projects are available
to skim through on my github page). In each project, I didn’t settle for the bare
minimum but created multiple versions and algorithms to determine the most
efficient one. This is more prominent in the last project, where I experimented
with different CUDA features and got very familiar with CUDA’s API. In addition,
these projects really sharpened my skills in C++ and debugging.
I have come to really appreciate the open-source philosophy by having been a
member of an open-source team, SpaceDot, for two years. SpaceDot is a
non-profit, volunteering and interdisciplinary student team that participates in “Fly
Your Satellite! 3”, a European Space Agency (ESA) Education Office’s program, and
that is working on building a satellite. Even though it’s a team consisting of merely
students, the strong work ethic and the values of this team is its greatest appeal.
During my stay there, I was appointed coordinator of the environmental
campaign of a PCB I co-designed and also wrote code for. This task came with a
lot of responsibility and taught me how to communicate efficiently, collaborate,
manage my time and adapt to different situations. It also highlighted the power of
initiative and showed me how to become a better member of a group myself. Not
to mention that the freedom that comes with this project as long as its complexity
have helped me develop my creative thinking and problem solving skills.
Joining the Clad team presents an exciting opportunity for me to further develop
my skills and gain valuable experience contributing to a professional
open-source project. The prospect of being mentored by Dr. Vassil Vassilev and
Parth Arora is truly a privilege, and I am eager to absorb their guidance and
insights. I am fully committed to making the most of this opportunity and actively
contributing to the success of the Clad project.

3.2. Interest in CERN-HSF
CERN has always been an organization that I admired, due to my long passion for
physics. When I first learned about Clad, its premise immediately captivated my
interest and as I delved deeper into understanding its inner workings, I found
myself getting more and more hooked and reminded of the intrigue that
lower-level programming offers. My very positive experience with CUDA was
what first drew me to this project, along with my newfound love for scientific
computing. This project perfectly combines all the above, making it the only
project I devoted myself to, and I truly believe in its importance. Moreover, Clad
has really won me over and I would love to continue contributing to it even after
this program.

https://spacedot.gr/

3.3. Experience with Clad
During my effort to familiarize myself with Clad and better grasp the premise of
this project, I identified and fixed issues. Notably, I took the initiative to open the
following issues:

● #812 Examine clang-15 failure on CUDA Gradient script
● #813 Expand the CI to include CUDA set up
● #822 Fix derivative initialization in void functions in reverse mode
● #832 Consider a redesign of the for loop's body in reverse pass

The PRs I completed or I’m currently working on are:
● #806 Fix CUDA gradient script - Merged
● #823 Fix derivative initialization of void functions in reverse mode
● #833 Fix Incorrect derivative when loops contains continue
● #834 Add inst folder to gitignore - Merged
● #835 Redesign of loop's body in reverse pass

Despite the ongoing debate surrounding the necessity of #823 and #835, I found
great value in experimenting with these ideas to enhance Clad and carrying them
through. These initiatives made me more familiar with Clad’s lowest levels and I
can now navigate through Clad’s source code with ease. Hence, I’m confident
that I can begin contributing meaningfully to Clad immediately.

Moreover, as I researched for void functions’ support, I tested and verified a
variation of some of the suggested additions proposed in the Implementation
section, specifically the snippets 1, 2,3 and 4 (working branch).

3.4. Other commitments during summer
Due to the challenging nature of the project and my desire to ensure that it is
carried out successfully, I believe extending the timeline to the fullest will provide
enough time to counter any unexpected bugs found along the way. The timeline
mentioned earlier takes that into consideration and also matches my university
schedule, to guarantee that all the project requirements are met during this time
period without compromising on quality or deadlines.

https://github.com/vgvassilev/clad/issues/812
https://github.com/vgvassilev/clad/issues/813
https://github.com/vgvassilev/clad/issues/822
https://github.com/vgvassilev/clad/issues/832
https://github.com/vgvassilev/clad/pull/806
https://github.com/vgvassilev/clad/pull/823
https://github.com/vgvassilev/clad/pull/833
https://github.com/vgvassilev/clad/pull/834
https://github.com/vgvassilev/clad/pull/835
https://github.com/vgvassilev/clad/compare/master...kchristin22:clad:ret-arg-void-func

