GSoC 2024 Proposal

E HEP Software Foundation

Implement Differentiating of
the Kokkos Framework in Clad

COMPILER

C|R

RESEARCH

Mentors: Vaibhav Thakkar, Vassil Vassilev, Petro Zarytskyi

Contact

Name: Atell (Yehor) Krasnopolskyi
Email: delta_atell@protonmail.com
Github: gojakuch

Location: Germany (eligible to work)
Citizenship: Ukraine

Timezone: CET, UTC+1 (Berlin)

Candidate’s Prior Experience

IRIS-HEP Fellowships 2022 & 2023:
e Jet Reconstruction with Julia, mentors: Benedikt Hegner (CERN), Graeme A Stewart
(CERN)
e Julia for Analysis Grand Challenge, mentors: Jerry Ling (Harvard University), Alex
Held (UWM)
Contributions to the project so far:
e Add Kokkos unit tests #826

e [cmake] Provide the DISABLE_LLVM_LINK_LLVM_DYLIB
flag for unittests #819 (merged)

mailto:delta_atell@protonmail.com
https://github.com/gojakuch
https://github.com/JuliaHEP/JetReconstruction.jl
https://github.com/Moelf/LHC_AGC.jl
https://github.com/vgvassilev/clad/pull/826
https://github.com/vgvassilev/clad/pull/819
https://github.com/vgvassilev/clad/pull/819

Project Overview

In mathematics and computer algebra, automatic differentiation (AD) is a set of techniques
to numerically evaluate the derivative of a function specified by a computer program.
Automatic differentiation is an alternative technique to Symbolic differentiation and Numerical
differentiation (the method of finite differences). Clad is based on Clang which provides the
necessary facilities for code transformation. The AD library can differentiate non-trivial
functions, to find a partial derivative for trivial cases and has good unit test coverage.

The Kokkos C++ Performance Portability Ecosystem is a production level solution for writing
modern C++ applications in a hardware-agnostic way. It is part of the US Department of
Energies Exascale Project — the leading effort in the US to prepare the HPC community for
the next generation of supercomputing platforms. The Ecosystem consists of multiple
libraries addressing the primary concerns for developing and maintaining applications in a
portable way. The three main components are the Kokkos Core Programming Model, the
Kokkos Kernels Math Libraries and the Kokkos Profiling and Debugging Tools.

The Kokkos framework is used in several domains including climate modelling where
gradients are an important part of the simulation process. This project aims at teaching Clad
to differentiate Kokkos entities in a performance-portable way.

Implementation Details

The goal is to implement the differentiation of the Kokkos high-performance computing
framework including the support of:

e Kokkos functors,

e Kokkos lambdas,

e Kokkos methods such as parallel_for, parallel_reduce and deep_copy,

e as well as the general support for Kokkos::View data structures,

e Enhance existing benchmarks demonstrating effectiveness of Clad for Kokkos

The additional aim of the project is to implement a generic approach to support any C++
library (starting with Kokkos) in such a way that the core of Clad is invariant to the internals
of the library, but any Clad user can add it in a pluggable format for individual use cases.
This ensures Clad’s usability for bigger projects that may include a lot of libraries.

The set-off points for the project should be the existing “Kokkos-aware Clad” PR #783 and
the test cases from my PR #826 for Kokkos unit tests give a basis of what should definitely
be implemented and serve as an initial list of use cases for Kokkos-aware Clad. The first
steps would include implementing the features of PR #783 one by one by designing the
more generic approach mentioned earlier while using PR #826 as a reference.

PR #826 mentioned above illustrates the possible usage of Clad with Kokkos lambda
functions, functions accessing Kokkos views and copying them, as well as functions calling
parallel loops (parallel_for, parallel_reduce).

https://github.com/vgvassilev/clad/pull/783
https://github.com/vgvassilev/clad/pull/826
https://github.com/vgvassilev/clad/pull/783
https://github.com/vgvassilev/clad/pull/826
https://github.com/vgvassilev/clad/pull/826

Further steps include developing the benchmarks, optimisation, polishing and perfecting the
desired general approach of making a library differentiable for Clad. This way, the project
acquires a wider set of applications, while not losing Kokkos as the initial target.
Thus, a possible plan may look like this:

e Some time will be needed for diving deeper into the insides of Clad and
understanding more about the relevant Kokkos features
Creating a general approach to making a library differentiable for Clad
Implementing the features of PR #783 one by one with the desired approach in mind
Checking against the existing unit tests provided in PR #826
Developing the benchmarks, more unit tests that address the body of the generated
derivatives (there are only value tests currently), optimisation
e Polishing and perfecting the desired general approach

To get into technical details, Clad uses the propagator system in its workings, that is the
pushforward method and the pullback method. In both forward and reverse modes, the
methods are called to differentiate other functions called inside the requested function
(although the forward mode only uses the pushforward method, as far as | am aware). The
idea behind the pushforward method is to associate the partial derivative, dv/dx, w.r.t. the
requested parameter, x, with every expression, v, starting with binding 1 as the derivative of
the argument w.r.t. itself. The idea of the pullback is similar, yet here the starting point is the
adjoint value of the function. Pullback pairs each variable u with df /du. The pullback
method, for instance, generalises the gradient method itself, in the sense that it accepts the
base adjoint value as an additional parameter (while the gradient sets it to 1 by default). To
make Kokkos differentiable in Clad, one would need to be able to propagate pullbacks and
pushforwards through its constructs, which is one of the goals of this project.

Timeline

Community Bonding Period

01.05.2024-26.05.2024

Engage with the community. Pick and solve some issues from GitHub to get a
deeper understanding of Clad’s internals. Reach out to experts and mentors for
opinions on the ideal project structure. Establish regular meetings with the
mentors. Set up the development environment. Set up external tools as
debuggers, debug versions of the compiler. Enhance the unit tests provided in
PR #826 to cover more deliverables of the project and outline the expected work
better.

Coding period begins

Week 1
27.05.2024-02.06.2024

First attempts to make clad work with Kokkos views, clarified project structure,
first draft of the generic approach mentioned above (possibly using custom
derivatives). Deliverable: initial support of Kokkos views, a general approach of
making a library differentiable for Clad.

https://github.com/vgvassilev/clad/pull/783
https://github.com/vgvassilev/clad/pull/826
https://github.com/vgvassilev/clad/pull/826

Week 2
03.06.2024-09.06.2024

Support for Kokkos views and primitive operations. Deliverable: advance the
support of Kokkos views with assignment by index, element access (both in
forward and reverse mode).

Week 3
10.06.2024-16.06.2024

Support for copying Kokkos views. Deliverable: differentiation of the code with
the deep_copy method (forward mode only).

Week 4 Support for basic Kokkos parallel operations. Deliverable: differentiation of
17.06.2024-23.06.2024 Kokkos lambdas and parallel_for (forward mode only).

Week 5 Support for Kokkos functors. Deliverable: full support for Kokkos functors and
94.06.2024-30 06.2024 Kokkos inline functions (forward mode only).

Week 6 Finish reimplementing the features of PR #783. Deliverable: support for Kokkos

01.07.2024-07.07.2024

subviews and everything else PR #783 provides (all compatible layouts, memory
spaces and host spaces but using the new approach) in the forward mode only.

Week 7
08.07.2024-14.07.2024

Buffer week in case of delays in reviews or implementation challenges.

Midterm Evaluations

Week 8
15.07.2024-21.07.2024

Support for Kokkos parallel_reduce. Deliverable: differentiation of Kokkos
parallel_reduce with policies of user’s choice (forward mode only).

Week 9-10
22.07.2024-28.07.2024
29.07.2024-04.08.2024

Reverse mode. Deliverable: every feature supported by the forward mode
should be supported by the reverse mode as well.

Week 11
05.08.2024-11.08.2024

Update tests and benchmarking, make unit tests keep up with the progress.
Deliverable: add tests that check the generated code as opposed to value-only
tests, develop benchmarks demonstrating the effectiveness of the current
approach of Clad for Kokkos.

Week 12
12.08.2024-18.08.2024

Develop enhanced test case examples for extended features that will eventually
be used to work on making them differentiable with Clad. Deliverable: test cases
with functions that take Kokkos views as parameters, return them, or both
(possibly with clad::jacobian); test cases with other View-like types such as
Kokkos::DynamicView, Kokkos::OffsetView, and Kokkos::DynRankView.

Week 13
19.08.2024-25.08.2024

Developing documentation, presenting the work. Deliverable: demonstrated
reduction of the binary sizes, a blog post about the achieved results;
presentation at the compiler-research.org team meeting.

Candidate’s Other Commitments

The only other obligatory commitment of any importance during the coding period is my
studies at the University of Wuerzburg (June only). This means having 2-3 subjects with

https://github.com/vgvassilev/clad/pull/783
https://github.com/vgvassilev/clad/pull/783

supposedly non-differentiated grading tests at the end (early July). Attending lectures and
practice sessions is not obligatory and from my experience of the previous 3 semesters,
regular attendance is not necessary. Thus, | will occasionally show up to the lectures when |
have time and | will need to write the final tests. However, taking my experience into
account, | am sure that this commitment is not going to prevent me from achieving the
project goals. Moreover, the courses | am taking this semester were selected with GSoC in
mind and, therefore, should not be too time-consuming.

