
WebAssembly
Support for clang-repl
Name: Anubhab Ghosh

GitHub Username: argentite

Email: anubhabghosh.me@gmail.com

LLVM Discord Username: argentite#0791

LLVM Discourse Username: argentite

Description
Clang includes libInterpreter, a framework for incrementally JIT compiling and executing C++
code. It is exposed to users through the clang-repl CLI tool. There is also another project
xeus-clang-repl that integrates it with the Jupyter xeus framework allowing clang-repl to run
on the server and interact with the user using a Jupyter interface inside a browser. This
allows an user to use clang-repl without any kind of environment setup.

However an obvious problem of this approach is that it shifts all the computational work to a
server from the user’s device. A potential solution to this problem is the use of Web
Assembly (WASM). It allows programs compiled to an intermediate bytecode representation
to be executed (inside a sandbox) by a Javascript runtime at closer to native speeds
compared to regular Javascript. This sandbox by default has no access to outside
environments (such as syscalls) and can only communicate using symbols imported to it or
exported from it.

WASM code can be generated ahead-of-time from many general purpose programming
languages including C++ using Clang and LLVM. However existing C++ code makes some
assumptions about the runtime environment such as the presence of standard libraries and
to some extent an Unix-like operating system with file system, sockets etc. WASI is a
standard “modular system interface” that defines a set of APIs (similar to sys calls) that a
WASM program can import to get access to such an Unix-like environment allowing standard
libraries to be built on top of it. Emscripten, alongside providing a custom compiler pipeline
based on Clang/LLVM for WASM also provides a standard library implementation that
interacts with Javascript code generated by it for unrestricted access to the outside
environment. However it is less flexible than WASI.

But our goal is to run libInterpreter/clang-repl as a WASM module and for it to generate
WASM output so that it can be executed by the same Javascript runtime (such as inside a
browser). From an AOT compiler point of view, WASM is just another CPU architecture that
is already well supported by LLVM. However, for a JIT compiler, it is significantly more
complex because, for security reasons and to allow the JS runtime to possibly compile
WASM to native code, WASM uses an abstract virtual stack machine.

https://github.com/argentite
mailto:anubhabghosh.me@gmail.com
https://discourse.llvm.org/u/argentite
https://github.com/compiler-research/xeus-clang-repl
https://xeus.readthedocs.io/
https://webassembly.org/
https://webassembly.org/
https://wasi.dev/
https://emscripten.org/


The abstract WASM CPU uses a Harvard architecture. Code is represented as a set of
variably sized functions, identified uniquely by an integer with associated bytecode while
data uses a linear address space. This means there is no intersection between code and
data memory and generated JIT code residing in data memory cannot simply be marked as
executable pages.

In fact, as a sandboxed architecture, there is possibly no practical way to add additional
code to a running WASM module instance. Instead the interpreter must create a new module
for the newly generated code. The new module has to be linked with existing code which can
be done statically or dynamically. In both cases, a single unified memory can be used as
shared data address space.

When “statically” linking, the existing code can be copied into the new module and the data
memory can be shared among them. Now the new module can replace the existing module
with help from Javascript code. This obviously has a high overhead for each iteration of the
interpreter.

When “dynamically” linking, reference to functions can be exported by modules to the
Javascript code and passed along to another module. This is faster for compilation but inter
module calls have higher overhead.

Mentors
● Vassil Vassilev

● Alexander Penev

Size of Project
Large

Expected Deliverables
● A feasibility study of whether it is possible to load and execute the WASM emitted by

clang inside the browser without server side support.

● Enable support for generating web assembly output in libInterpreter.

● Port clang-repl to web assembly to run inside a JS engine environment.

● Load and execute the compiled WASM modules.

● Integrate the work in xeus-clang-repl.



Project Timeline
Time Task Deliverable

Week 1 Define scope of work A short technical report

Week 2 Produce WASM code from the
interpreter (outside a Javascript
environment)

Display the generated code to the
user

Week 3-4 Implement the environment required for
Clang/LLVM to run in WASM (possibly
stub functions in the Support library) and
run libInterpreter inside a JS engine

libInterpreter can parse user input
and display the generated WASM
inside of a JS/WASM engine

Week 5-6 Produce separate WASM modules for
each interpreter input and execute them

User can run independent units of
code in the REPL without
interdependence inside a JS
engine

Week 7-10 Link together the modules through
Javascript

User can run code dependent on
previous input code

Week 11 Integration with Jupyterlite through
xeus-lite or otherwise

User can run interpreted C++
code in Jupyter

Week 12 Write instructions for using the kernel Documentation in the form of a
wiki page/post

Timeframe of Participation
29th May to 28th August 2023, according to the GSoC timeline.

Personal Details
● I am a final year Computer Science and Engineering student at Indian Institute of

Information Technology, Kalyani. I am interested in compiler design and
development. I have taken two courses in compiler design and automata theory.

● I have had an internship under INRIA, Paris where I worked on an OCaml lex-yacc
based tool that parsed (incomplete) portions of C code extracted from git diffs (of the
Linux kernel source) and analyzed them for multiple occurrences of similar changes.
I also wrote another tool to approximately convert python code to a C-like syntax to
be used by the former parser.

● I have had another internship under INRIA where I performed some experimental
modifications on the Linux kernel scheduler introducing an atomic flag to avoid race
conditions when multiple processes wake up at the same time causing them to end
up at the run queue of the same core instead of other free ones.



Have you had any prior contributions to LLVM? If yes, please
provide links to these contributions.
I have previously participated in Google Summer of Code 2022 working on Shared Memory
Based JITLink Memory Manager.

Technical Skills
● C/C++

● GNU Debugger

● Git

● LLVM/Clang

Availability & Other Commitments
I will possibly have classes during the month of August.

https://summerofcode.withgoogle.com/archive/2022/projects/peDPYCpm
https://summerofcode.withgoogle.com/archive/2022/projects/peDPYCpm

