
Design and Develop a CUDA Engine
for clang-repl

Proposal

Anubhab Ghosh
Indian Institute of Information Technology, Kalyani

Overview
Graphical Processing Units (GPUs) are a class of hardware in a computer system that
produce graphical output for humans. Modern graphics rendering techniques increasingly
use a lot of parallel computation for performance reasons that leads to modern GPUs having
high parallel computation capacity. This gives rise to General-Purpose Compute on Graphics
Processing Units (GPGPU) that expands the parallelization capabilities of the GPU to
computation that do not necessarily involve graphics. This is highly useful for highly
parallelizable workloads such as machine learning, processing of large amounts of scientific
data, running simulation etc.

CUDA is a GPGPU platform and API targeted towards NVIDIA GPUs that gives access to
compute elements of the GPU through standard programming languages like C++.

LLVM supports compilation of CUDA code. It has a distinction between host code and device
code where host code runs on CPU and device code is compiled to NVPTX, the low level
assembly language for NVIDIA GPUs. Only some functions marked as kernel functions are
callable from host code and works as the interface between these two.1

HIP is a C++ API and “kernel language” for writing GPGPU code in a vendor independent
manner. Currently it provides a thin abstraction over both NVIDIA and AMD GPUs.

Clang-repl is a C/C++ interpreter that is part of the LLVM project that can compile C++ code
from user interactively just-in-time and execute them using the interactive compilation
features of clang.

Cling is another C++ interpreter that is part of the ROOT project that is also based on LLVM
and uses similar technologies. It is used for data analysis in high energy physics research.
The next version of Cling will be based on clang-repl.2

The goal of the project is to implement CUDA support for clang-repl. This would possibly
require clang-repl to distinguish between host and device code and separately compile
device code to PTX. Most of the functionality has already been implemented in Cling. It has
to be generalized for the wider LLVM project and upstreamed into clang-repl. If time permits,
the secondary goal of the project is to research the requirements and devise a plan for
implementing HIP support in clang-repl.

2 https://root.cern/blog/cling-in-llvm
1 https://llvm.org/docs/NVPTXUsage.html

https://root.cern/blog/cling-in-llvm
https://llvm.org/docs/NVPTXUsage.html


Project Motivation
The CUDA support in clang-repl will be useful for interpreting CUDA C++ code. Once this is
achieved it will be integrated into xeus-clang-repl3. This is a Jupyter Notebook kernel that
allows running C++ interactively. The long term goal is to enable CUDA C++ to be mixed
with Python and regular C++.

Such implementation would enable a single ecosystem for HEP where physicists can mix
Python, C++ and CUDA codes in the same environment. Upon project completion, it would
be easier to use CUDA-based GPUs for data analysis in HEP.

Personal Motivation
Low level details of computer systems always fascinate me. I have been interested in
system programming and compilers since my childhood. Over the years, I have also
attempted to create my own toy operating systems and languages.

Last summer I worked on LLVM JITLink as part of Google Summer of Code 2022.4

Clang-repl is a user of the library, so I believe the experience gained will be useful towards
this project as well.

Finally, I love and fully believe in open source and contributing to open source software is
always a pleasure for me.

4 https://summerofcode.withgoogle.com/programs/2022/projects/peDPYCpm
3 https://github.com/compiler-research/xeus-clang-repl

https://summerofcode.withgoogle.com/programs/2022/projects/peDPYCpm
https://github.com/compiler-research/xeus-clang-repl


Implementation Details
CUDA code is a superset of C++ syntax and as such cannot be considered valid C++. The
Nvidia CUDA Compiler (nvcc) splits the source code into device code and host code that
respectively run on the GPU and CPU. They are passed through different compilation
processes. The device code is compiled to PTX and embedded within the host code. The
host code is appropriately modified to call CUDA runtime APIs and pass the device code. A
similar approach needs to be taken for interactive C++ as well.

Clang already supports CUDA code compilation with -x cuda and related arguments.
However this is not enabled in clang-repl. Support for this needs to be added by dynamically
loading CUDA runtime libraries like libcuda.so.

Deliverables
● Generalize the CUDA backend implemented in Cling and write a detailed request for

comment (RFC) document describing the design that is to be implemented in
clang-repl.

● Gather feedback from the LLVM community and apply necessary changes to the
design.

● Implement the backend as per the design in the RFC. Add proper tests for it.

● Write tutorials or blog posts describing how to use the new CUDA backend in
clang-repl.

● Adopt the work in xeus-clang-repl which will bring us closer to the vision of a
one-ecosystem being able to mix code between C++/Python and CUDA.

Stretch goal
If time permits, we plan to research the requirements supporting HIP in clang-repl.

Obligations
● I will dedicate 20 hours/week to work related to this project.

● I will maintain a document describing my current progress.

● I will provide regular updates to my mentors regarding my progress.

Timeline
1st December - 14th December Study the relevant code that exists in Cling, especially

around IncrementalCUDADeviceCompiler.
Deliverable: More concrete plan of work presented at



one of the relevant meetings.

15th December - 28th December Iterate on various designs for the new backend with
my mentor.
Deliverable: Incorporated suggestions of my
supervisor's comments in the work plan.

29th December - 11th January Prepare an RFC describing the plan and design for
the new CUDA backend for clang-repl.
Deliverable: Submit it to the LLVM discussion forums
to gather further input and direction.

12th January - 25th January Gather feedback from the LLVM community through
the RFC and iteratively improve the design.

Simultaneously start implementation according to the
current draft.

Deliverable: A document describing the final design
for the new backend.

26th January - 8th February Primarily implement the new backend in clang-repl
according to the design. This includes debugging,
fixing problems and adding tests for the new code.

Also focus on passing CUDA specific tests that
already exist in Cling.

At the same time continue to improve the design as
needed based on new feedback or insights gained
during development.

Deliverable: CUDA backend implemented in
clang-repl.

9th February - 22nd February

23rd February - 8th March

9th March - 22nd March Buffer week for college exams.

23rd March - 5th April Prepare a blog post with tutorials for using CUDA in
clang-repl with the new backend.
Deliverable: Tutorial article

6th April - 19th April Research on requirements for providing an HIP
backend in clang-repl.

20th April - 3rd May Iterate on designs for a HIP backend for clang-repl
and iteratively improve it by discussing with mentors.

Deliverable: Prepare an RFC document describing
the design to gather feedback from the LLVM
community.

4th May - 17th May Buffer week for any remaining work. Continue to
improve the design based on feedback from the LLVM
community or work on implementation.



Personal Details
Name: Anubhab Ghosh

University: Indian Institute of Information Technology, Kalyani

Email: anubhabghosh.me@gmail.com

Github: argentite

LinkedIN: https://www.linkedin.com/in/anubhab-ghosh-44b451194

LLVM Discord: argentite#0791

Time Zone: IST (UTC + 5:30)

Country: India

mailto:anubhabghosh.me@gmail.com
https://github.com/argentite
https://www.linkedin.com/in/anubhab-ghosh-44b451194

