
WebAssembly Support for clang-repl
• Google Summer of Code 2022 with LLVM Compiler Infrastructure (Project)
• Student: Anubhab Ghosh (Github)
• Mentors: Vassil Vassilev, Alexander Penev

Introduction
The Clang project includes an interpreter ClangREPL that allows interactive
execution of C++ code by just-in-time (JIT) compiling it to native code. Xeus
framework can be used to access it through Jupyter in a web browser. However,
it shifts the actual computational load to the server instead which is often
undesirable.

WebAssembly is a solution to the problem. It allows sandboxed execution of
native (e.g. C/C++/Rust) programs compiled to an intermediate bytecode at
closer to native speeds. The idea is to run clang-repl within WebAssembly and
generate JIT-compiled WebAssembly code and execute it on the client side.

However, generating JIT-compiled code in WebAssembly comes with many chal-
lenges. The root problem is code inside a WebAssembly module is immutable
which is unacceptable for JIT. WebAssembly uses a Harvard-like architecture
where code does not even reside in the same memory address space as data.
Instead at runtime, all functions are identified by integer indices whose ac-
tual internal representation is opaque to the program. This gives the engine
more flexibility over how they want to implement it but is problematic for JIT
compilers.

Goals

1. Enable clang-repl to generate WebAssembly output.
2. Port clang-repl and all associated dependencies and other infrastructure

to run in WebAssembly inside a browser.
3. Execute the generated WebAssembly code in the browser to truly become

an interpreter.
4. Add associated libraries, headers, etc. to make it functional for a user.
5. Integrate it with JupyterLite, which is a version of Jupyter that runs

entirely on the client side.

Design and Implementation
The solution to avoid the code immutability problem was to create a new
WebAssembly module at each iteration of the REPL loop. Intially, a big
precompiled WebAssembly module containing the Standard C/C++ libraries,
LLVM, Clang, wasm-ld is sent to the browser. This module is responsible for
running the interpreter and compiling the user code.

1

https://summerofcode.withgoogle.com/programs/2023/projects/X0cFgJkY
https://github.com/argentite
https://github.com/jupyter-xeus/xeus
https://github.com/jupyter-xeus/xeus
https://jupyter.org
https://github.com/jupyterlite/jupyterlite


Each time the user provides the input code, it is run through the standard Clang
interpreter pipeline beginning with Interpreter::Parse() where the incremen-
tal mode of Clang is used to parse the code and generate a llvm::Module.

But after this, we differ from the standard ClangREPL pipeline. We cannot call
Interpreter::Execute() to execute the module because it relies on JITLink
which directly places the compiled code into memory and marks the regions as
executable. This is impossible in the immutable code world of WebAssembly.

Instead, we use the LLVM WebAssembly backend manually to produce an object
file. This file is then passed to the WebAssembly version of LLD (wasm-ld)
to turn it into a shared library which is written to the virtual file system of
Emscripten.

Now the dynamic linking facilities of Emscripten can be used to load this library.
Under the hood, this creates a new WebAssembly module from the virtual shared
library file and instantiates it. It shares its data memory with the main module.
WebAssembly exports and imports from this new module are linked with the
original and earlier ones.

2



3



Current State

A proof of concept demo is available that implements all of this out-of-tree. It
includes standard libraries and SDL. But the goal is to integrate as much of
it into upstream Clang as possible which is currently in progress (D158140)
and expected to take some time. The integration with XeusLite/JupyterLite is
currently not possible until the core functionality is accepted into Clang.

Future Work
XeusLite/JupyterLite integration is pending. That should allow a more conve-
nient interface for using the interpreter in the browser.

4

https://wasmdemo.argentite.me
https://reviews.llvm.org/D158140

	WebAssembly Support for clang-repl
	Introduction
	Goals

	Design and Implementation
	Current State

	Future Work


