
 Using ROOT in the field of genome sequencing

 Aditya Pandey
 April 1, 2025

 Mentoring Organization:- CERN-HSF

 Mentors:-

 Name :- Martin Vassilev
 Email:- mvassilev@uni-plovdiv.bg

 Name :- Jonas Rembser
 Email:- Jonas.Rembser@cern.ch

 Name :- Fons Rademakers
 Email:- Fons.Rademakers@cern.ch

 Abstract

This project aims to advance genomic data management by implementing ROOT's
next-generation RNTuple format for sequence alignment storage. Beginning with validation of
previous GeneROOT benchmarks showing 4x performance gains with TTree, we will then
extend these capabilities with RNTuple technology. Genomic sequencing data volumes are
growing exponentially, creating performance bottlenecks in traditional formats. RNTuple's
improved memory mapping, type safety through templated interfaces, and parallelization
capabilities position it as an ideal solution. We will systematically compare compression
algorithms, implement file splitting strategies, and benchmark against established formats. The
project will deliver optimized tools for handling rapidly growing genomic datasets, potentially
establishing a new standard for high-performance genomic data analysis.

mailto:mvassilev@uni-plovdiv.bg
mailto:Jonas.Rembser@cern.ch
mailto:Fons.Rademakers@cern.ch
https://github.com/mvassilev

Contents

 1 About Me 3
1.1 The Student . 3
1.2 Project commitment and motivation. 33
1.3 Technical Profile . 44

 2 The Project 4
2.1 Description . 4

3 Implementation Plan 4
 3.1 Overview . 4

3.2 Detailed Description . 4
 3.2.1 Stage 1 . 5
 3.2.2 Stage 2 . 11

4 Timeline 19

4.1 Approximate Timeline . 19-21

5 Contributions and Communication 21
 5.1 Communication with Mentors 21

5.2 Contributions . 22

6 References 22

6 References . 22

1. About Me

1.1 Personal Details

● Name: Aditya Pandey
● Email: adityapand3y666@gmail.com
● GitHub: AdityaPandeyCN
● Location: Ranchi, India
● Blog: adityapandeycn.github.io/personalblog/

1.2 Motivation

My experience with C++ programming and low-level optimization makes me well-suited for this
project. The skills I developed during my previous GSoC, particularly in validation, error
handling, and creating simulation-ready models, will help me in my work with GeneROOT. My
Rubik's cube solver project demonstrates my ability to implement practical solutions to complex
problems, showcasing my technical creativity and problem-solving approach.

1.3 Time Availability

I am fully committed to dedicating 60 hours per week to this project during the initial GSoC
period, leveraging my complete availability during summer break from May to August. After
August, I will maintain a consistent 40-hour weekly commitment, with no other prior
commitments.

1.4 Technical Profile

Programming and Development Experience

I have over 2 years of programming experience particularly relevant to this project:

Languages and Technologies

● Languages: C++, Python, C, Rust, JavaScript
● Libraries/Frameworks: Django, React.js
● Optimization Techniques: Algorithmic optimization

Relevant Experience

● Google Summer of Code with INCF: Developed an interactive Python tool with robust
error handling and validation checks for neuronal morphology conversion

My GSoC 2024 work

● Strong problem-solving skills: Solved 150+ problems on LeetCode
● Qualified for the Pre-Regional Mathematics Olympiad(1st stage to IMO)

https://github.com/AdityaPandeyCN
http://adityapandeycn.github.io/personalblog/
https://github.com/AdityaPandeyCN/rubikscube-solver
https://github.com/AdityaPandeyCN/rubikscube-solver
https://github.com/AdityaPandeyCN/GSOC2024_INCF

2. Description

This project extends GeneROOT by implementing ROOT's next-generation RNTuple format for
genomic data storage and analysis. It begins by reproducing previous benchmark results, then
develops an RNTuple-based system to replace the TTree implementation used in earlier
GeneROOT work. The project will create conversion utilities between standard genomic formats
(BAM/CRAM) and RNTuple, benchmark different compression algorithms, explore file splitting
strategies, and document performance comparisons.

3. Implementation Plan

The project will be executed in two distinct stages:

3.1 Overview

Stage 1: Reproduction and Baseline Establishment

The first stage focuses on reproducing previous GeneROOT results and establishing the
foundation for RNTuple implementation:

1. Set up the development environment with ROOT, htslib, and necessary genomic tools
2. Reproduce the TTree-based ROOT Alignment Maps (RAM) implementation from

previous GeneROOT work
3. Verify and document performance comparisons between BAM/CRAM formats and the

TTree implementation
4. Investigate and compare Samtools’ latest BAM/CRAM compression strategies with the

ROOT Alignment Maps (RAM)
5. Benchmark different compression strategies (ZLIB, LZMA, LZ4) with the existing TTree

format
6. Develop and test the basic genomic data model design that will later be implemented

with RNTuple

Stage 2: RNTuple Implementation and Advanced Features

The second stage involves implementing the RNTuple storage backend and developing
advanced features:

1. Implement a genomic data model using RNTuple's templated field system
2. Develop conversion utilities between BAM/CRAM formats and the RNTuple

implementation
3. Implement and test different file splitting strategies (by chromosome, region, read group)
4. Create efficient query tools for genomic region retrieval

5. Conduct comprehensive benchmarking comparing RNTuple performance against both
TTree and traditional formats

6. Produce final comparison report with performance analysis and recommendations

3.2 Detailed Description

I plan to execute the conversion part in 2 stages.

 Stage 1: Reproduction and Baseline Establishment

High-Level Goal

● To reproduce and validate existing GeneROOT results with the TTree format
● To establish reliable baseline metrics for comparing future RNTuple implementations
● To identify and address specific performance bottlenecks in the current implementation
● To optimize the existing codebase before transitioning to the new format

 Workflow

 Setup Environment
 ↓
 Get Test Data
 ↓
 Implement TTree
 ↓
 Investigate Samtools Compression Strategies
 ↓
 Find Bottlenecks
 ↙ ↓ ↘
 Optimize Search Add Batch Improve Resource Use
 Processing
 ↘ ↓ ↙
 Test & Validate
 ↓
 Prepare for Stage 2

Completed Work

I have already made significant progress on reproducing and optimizing the existing
GeneROOT implementation:

Environment and Dataset Preparation:

● Successfully set up the development environment with ROOT and htslib
● Discovered and leveraged existing tools in the ramtools repository
● Acquired test files of varying sizes for comprehensive benchmarking:

○ 9GB BAM file (Pond-154926.bam)
○ 15GB BAM file

(HG00154.mapped.ILLUMINA.bwa.GBR.low_coverage.20101123.bam)
● Created ROOT files with different compression algorithms (ZLIB, LZ4, LZMA)
● Created a PR to the GeneROOT repository with optimized ramview implementation

Key Code Optimizations Implemented

High-Level Goal

My optimizations target critical performance bottlenecks in genomic data processing, focusing
on improving query speed while maintaining memory efficiency for large datasets.

 An overview of the changes in ramview

Advanced Search Algorithm

Problem: The original GeneROOT implementation uses a linear search to find genomic
positions, which becomes extremely inefficient for large files where the target region might be
millions of entries away from the starting point. This results in unnecessary I/O operations and
slow queries, especially when users want to examine distant genomic regions.

Solution: I replaced the linear search with a two-phase approach combining exponential and
binary search algorithms. This dramatically reduces the number of entries that need to be
examined to find a specific genomic region:

// ORIGINAL: Simple linear search through all entries
for (; start_entry < end_entry; start_entry++) {
 t->GetEntry(start_entry);
 if (r->GetPOS() + r->GetSEQLEN() > range_start) {
 break;
 }
}

// OPTIMIZED: Exponential search followed by binary search
Long64_t jump = 1;
Long64_t curr = start_entry;
while (curr < end_entry) {
 t->GetEntry(curr);
 if (r->GetPOS() + r->GetSEQLEN() > range_start) {
 found_start = true;
 break;
 }
 start_entry = curr;

https://github.com/GeneROOT/ramtools/pull/1

 jump *= 2;
 curr = std::min(curr + jump, end_entry - 1);
}

Batch Processing: Problem: The original implementation processes genomic entries one at a
time, requiring a separate disk I/O operation for each entry. For large genomic regions
containing thousands or millions of entries, this creates a severe I/O bottleneck, with most
processing time spent waiting for disk access rather than analyzing data.

Solution: I implemented dynamic batch processing that loads multiple entries in a single
operation, drastically reducing I/O overhead:

// NEW: Adaptive batch sizing function
inline int getOptimalBatchSize(Long64_t regionSize) {
 if (regionSize < 100) return 20;
 if (regionSize < 1000) return 100;
 if (regionSize < 10000) return 1000;
 if (regionSize < 100000) return 5000;
 return 10000;
}
// Batch processing implementation
const int BATCH_SIZE = getOptimalBatchSize(end_entry - start_entry);
std::vector<Long64_t> entryBuffer(BATCH_SIZE);
// Process entries in optimally-sized batches
while (j < end_entry) {
 // Fill the buffer with next batch of entries
 int batchEntries = 0;
 for (int i = 0; i < BATCH_SIZE && j < end_entry; i++, j++) {
 entryBuffer[i] = j;
 batchEntries++;
 }
 // Process the entire batch at once
 for (int i = 0; i < batchEntries; i++) {
 t->GetEntry(entryBuffer[i]);
 // Process entry...
 }
}

Resource Optimization

Problem: The original code uses fixed memory allocations regardless of file size, which is
inefficient for both small and large datasets. For small files, this wastes memory; for large
genome files (often 10-30GB), it causes excessive paging and poor performance.

Solution: I implemented dynamic resource allocation that scales based on file size.

// NEW: File-size based optimizations

Long64_t fileSize = f->GetSize();
if (fileSize > 1024*1024*1024) { // 1 GB
 t->SetMaxVirtualSize(256*1024*1024); // 256 MB for large files
}

Selective Branch Management:

Problem: Genomic data is complex with many fields, but most queries only need a small subset
of this data. The original implementation loads all data branches even when only position
information is needed, wasting memory and I/O bandwidth.

Solution: I implemented selective branch loading to focus resources on only the necessary
data.

// ORIGINAL: Basic branch enabling
if (b->GetSplitLevel() > 0)
 t->SetBranchStatus("RAMRecord.*", 0);

// OPTIMIZED: More control
t->SetBranchStatus("*", 0); // Disable all branches
t->SetBranchStatus("RAMRecord.v_refid", 1);
t->SetBranchStatus("RAMRecord.v_pos", 1);
t->SetBranchStatus("RAMRecord.v_lseq", 1);

 Result of benchmarking region view of RAM files

Note:- All the scripts used for benchmarking can be found here

 Remaining Work for Stage 1
High-Level Goal

● To comprehensively test the optimized TTree implementation across various file sizes
and formats

● Investigate and compare the latest compression strategies used by Samtools for
conversions to BAM, with RAM (ROOT Alignment Maps)

● To establish standardized benchmark protocols for consistent performance measurement
● To document performance patterns and scaling behaviors to inform RNTuple

implementation
● To identify specific areas where RNTuple could provide the greatest performance

improvements

1. Analysis of Latest Compression Strategies used by Samtools

High-Level Goal

● Evaluate modern compression techniques from Samtools/HTSlib for genomic data.
● Integrate the most efficient methods into ROOT’s storage system for optimal space and

speed.
● Enable flexible compression choices to suit different genomic workflows and data sizes.

Analysis Strategy

1.1 Comprehensive Analysis of Current Compression Technologies

I will conduct a thorough examination of Samtools/HTSlib compression implementations,
focusing on:

BGZF (Blocked GZIP Format) in BAM Files

● Block structure analysis: Study the 64KB block architecture that enables random access
while maintaining gzip compatibility

● Parameter tuning: Investigate the nine compression levels (1-9) and their impact on
genomic data

● Multi-threading implementation: Analyze how bgzf_mt API implements parallel
compression/decompression

CRAM Advanced Codecs

https://github.com/AdityaPandeyCN/ramtools

● rANS (Asymmetric Numeral Systems): Study both 4×8 (CRAM 2.1/3.0) and 4×16
implementations

● External codecs: Analyze bzip2 and LZMA integration techniques
● CRAM 3.1 transforms: Examine advanced techniques like Nx16 interleaving, RLE,

bit-packing, and striped rANS

1.2 Implementation and Testing Methodology

My approach to comparing these with ROOT's compression capabilities will include:

● Codec library integration: Evaluate feasibility of porting or interfacing with HTSlib's
compression libraries

● ROOT-native implementation: Develop ROOT-compatible versions of key algorithms
where direct integration isn't possible

● Reference-based compression: Implement specialized reference sequence handling
similar to CRAM

● Adaptive selection: Create a dynamic system to select optimal compression methods
based on data characteristics

2. Comprehensive File Format and Size Testing

● Acquire and test additional files of varying sizes following My Mentor’s guidance:
○ Small (1-5GB), Medium (5-15GB), Large (15-30GB), Very Large (30GB+)
○ Test across all formats: BAM, CRAM, FASTA, FASTQ

● Process the 15GB BAM
file(HG00154.mapped.ILLUMINA.bwa.GBR.low_coverage.20101123.bam) already downloaded

● Download additional large datasets (preferably 20GB+ files)
● Create corresponding ROOT files with all compression methods

3. Complete Benchmark Matrix

● Create a comprehensive benchmark matrix:
○ File Formats: BAM vs CRAM vs ROOT (ZLIB/LZMA/LZ4)
○ File Sizes: Small vs Medium vs Large vs Very Large
○ Operations: Region queries, whole file processing, conversion times
○ Genomic Regions: Cover some complex regions to solidify the benchmarking

● Document performance patterns as file size increases
● Identify scaling factors and potential bottlenecks

4. RAM Implementation Analysis

● Analyze RAM data model for compatibility with RNTuple
● Evaluate TTree performance characteristics at different file sizes
● Identify performance patterns that could inform RNTuple implementation

5. Documentation and Analysis

● Create detailed performance graphs showing scaling behavior
● Document all benchmark results with statistical significance
● Prepare comprehensive report comparing results with the original GeneROOT

benchmarks
● Include solid conclusions about performance based on larger file testing

 Transition Preparation for Stage 2

High-Level Goal

● To analyze the optimized TTree codebase for insights applicable to RNTuple design
● To identify critical data access patterns and performance hotspots that affect genomic

data processing
● To design adapter interfaces that will facilitate migration between implementations
● To create a prototype RNTuple data model based on TTree implementation insights

 Stage 2: RNTuple Implementation for Genomic Data
High-Level Goal

● To create an optimized representation of genomic alignment data balancing
completeness with performance

● To leverage RNTuple's type-safe field system to prevent common programming errors
● To organize genomic information in a columnar structure enabling efficient memory

access
● To design a model that naturally accommodates the hierarchical nature of genomic data

 Workflow

 Plan Stage-2
 ↓
 Genomic Data Model-RNTuple
 ↓
 Conversion-BAM/CRAM
 ↓
 File Splitting
 ↙ ↓ ↘
 By Chromosome By Region By Read Group
 ↘ ↓ ↙
 Query Tools
 ↙ ↓ ↘
 Implement Region Optimize Access Memory Efficient
 Queries Patterns Results
 ↘ ↓ ↙

 Benchmarking
 ↓
 Final Report
1. Data Model Design

We plan to create a specialized RNTuple data model that maps genomic alignment data (from
BAM/CRAM formats) to RNTuple's type-safe field system. Each alignment record contains
essential genomic information in a type-safe, columnar structure.
 Code Snippet
// Define RNTuple model for genomic alignment data
std::shared_ptr<RNTupleModel> CreateAlignmentModel() {
 auto model = RNTupleModel::Create();

 // Core alignment fields
 model->MakeField<std::string>("name"); // Read name
 model->MakeField<std::string>("chromosome"); // Reference name
 model->MakeField<int32_t>("position"); // Alignment position
 model->MakeField<uint16_t>("flags"); // BAM flags
 model->MakeField<uint8_t>("mapq"); // Mapping quality
 model->MakeField<std::string>("cigar"); // CIGAR string
 model->MakeField<std::string>("sequence"); // Read sequence
 model->MakeField<std::string>("quality"); // Base qualities

 // Tags stored as key-value pairs
 model->MakeField<std::vector<std::pair<std::string, std::string>>>("tags");

 return model;
}

This model leverages RNTuple's templated interfaces to provide compile-time type checking,
preventing common errors in genomic data processing. The columnar structure allows efficient

memory access patterns for specific fields, which is particularly valuable for genomic queries
that often access only chromosome and position information.
2. Optimized Conversion Pipeline

High-Level Goal

● To efficiently transform standard genomic formats (BAM/CRAM) into RNTuple storage
● To handle massive data volumes (10-30GB per sample) with minimal computational

overhead
● To provide configurable compression options balancing file size against processing

speed
● To implement memory-efficient batch processing for large genomic datasets

We plan to develop efficient converters between standard genomic formats (BAM/CRAM) and
RNTuple storage. The implementation uses htslib for parsing input files and incorporates
batched processing and memory management techniques to handle massive genomic datasets
(often 10-30GB per sample).

// Core conversion function (simplified)
int ConvertToRNTuple(const char* inputFile, const char* outputFile) {
 // Open input CRAM/BAM file
 samFile* in = sam_open(inputFile, "r");
 bam_hdr_t* header = sam_hdr_read(in);
 // Create RNTuple model and writer
 auto model = CreateAlignmentModel();
 auto ntuple = RNTupleWriter::Recreate(std::move(model), "Alignments",

outputFile);
 // Get field handles
 auto name =

ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("name");
 auto chromosome =

ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("chromosome");
 auto position =

ntuple->GetModel()->GetDefaultEntry()->Get<int32_t>("position");

 // ... get other fields ...
 // Process alignments
 bam1_t* aln = bam_init1();
 while (sam_read1(in, header, aln) >= 0) {
 // Extract data from BAM record
 *name = bam_get_qname(aln);
 *chromosome = header->target_name[aln->core.tid];
 *position = aln->core.pos + 1;
 // ... extract other fields ...
 // Write to RNTuple
 ntuple->Fill();
 }
 // Cleanup
 bam_destroy1(aln);
 bam_hdr_destroy(header);
 sam_close(in);

 return 0;
}

The converter supports various compression algorithms (ZLIB, LZMA, LZ4, ZSTD) with
configurable settings, allowing users to balance file size against processing speed:

 Code Snippet
// Configure RNTuple compression options
RNTupleWriter::RNTupleWriteOptions ConfigureCompression(const std::string& algorithm) {
 RNTupleWriter::RNTupleWriteOptions options;

 if (algorithm == "zlib") {
 options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kZLIB, 6);
 } else if (algorithm == "lzma") {
 options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kLZMA, 9);
 } else if (algorithm == "lz4") {
 options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kLZ4, 4);
 } else if (algorithm == "zstd") {
 options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kZSTD, 5);
 }

 // Configure optimal cluster size for genomic data
 options.SetNElements(64000);

 return options;
}

3. Advanced Splitting Strategies
High-Level Goal

● To optimize both storage organization and query performance through intelligent data
partitioning

● To address different access patterns common in genomic research (chromosome-level,
region-specific)

● To enable parallel processing opportunities through logical data separation
● To reduce I/O overhead when analyzing specific genomic regions

We plan to implement multiple file organization strategies to optimize storage and query
performance. The chromosome-based splitting creates separate files for each chromosome,
enabling parallel processing and reducing I/O when analyzing specific genomic regions:

 Code Snippet
int SplitByChr(const char* inputFile, const char* outputPrefix) {
 // Open input file
 samFile* in = sam_open(inputFile, "r");
 if (!in) return -1;

 bam_hdr_t* header = sam_hdr_read(in);
 if (!header) {
 sam_close(in);
 return -1;
 }
 // Map of chromosome to RNTuple writers
 std::map<std::string, std::shared_ptr<RNTupleWriter>> writers;
 // Process alignments
 bam1_t* aln = bam_init1();
 while (sam_read1(in, header, aln) >= 0) {
 // Skip unmapped reads
 if (aln->core.tid < 0) continue;
 std::string chr = header->target_name[aln->core.tid];
 // Create new writer for this chromosome if needed
 if (writers.find(chr) == writers.end()) {
 auto model = CreateAlignmentModel();
 std::string filename = std::string(outputPrefix) + "/" + chr + ".root";
 writers[chr] = RNTupleWriter::Recreate(std::move(model), "Alignments",

filename);
 }

 // Get the writer for this chromosome
 auto& ntuple = writers[chr];
 // Fill data fields
 *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("name") =

bam_get_qname(aln);
 *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("chromosome") = chr;
 *ntuple->GetModel()->GetDefaultEntry()->Get<int32_t>("position") = aln->core.pos +

1;
 *ntuple->GetModel()->GetDefaultEntry()->Get<uint16_t>("flags") = aln->core.flag;
 *ntuple->GetModel()->GetDefaultEntry()->Get<uint8_t>("mapq") = aln->core.qual;
 // Extract and store sequence
 int l_seq = aln->core.l_qseq;
 std::string sequence;
 sequence.reserve(l_seq);
 uint8_t* seq = bam_get_seq(aln);
 for (int i = 0; i < l_seq; i++) {
 sequence.push_back("=ACMGRSVTWYHKDBN"[bam_seqi(seq, i)]);
 }
 *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("sequence") = sequence;
 // Extract quality scores
 std::string quality;
 quality.reserve(l_seq);
 uint8_t* qual = bam_get_qual(aln);
 for (int i = 0; i < l_seq; i++) {
 quality.push_back(33 + qual[i]);
 }
 *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("quality") = quality;
 // Extract CIGAR string
 uint32_t* cigar = bam_get_cigar(aln);
 std::string cigarStr;
 for (uint32_t i = 0; i < aln->core.n_cigar; ++i) {
 cigarStr += std::to_string(bam_cigar_oplen(cigar[i]));
 cigarStr += bam_cigar_opchr(cigar[i]);
 }
 *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("cigar") = cigarStr;
 // Write record
 ntuple->Fill();
 }
 // Cleanup
 bam_destroy1(aln);
 bam_hdr_destroy(header);
 sam_close(in);
 return 0;
}

Beyond chromosome-based splitting, we'll also implement:

● Region-based splitting: Divides the genome into configurable regions (fixed-size or
feature-based)

● Read group splitting: Separates multi-sample datasets, particularly useful in population
genomics studies

4. High-Performance Query Engine

High-Level Goal

● To fully leverage RNTuple's columnar structure for rapid retrieval of genomic regions
● To implement a two-phase query approach minimizing unnecessary data access
● To provide memory-efficient handling of large result sets common in genomic analysis
● To enable complex filtering based on alignment properties without performance penalties

This two-phase query approach (first scanning minimal fields, then retrieving full records)
significantly accelerates genomic region queries by reducing the amount of data accessed. The
implementation also provides memory-efficient handling of large result sets and support for
filtering based on alignment properties.

 Code Snippet
// Query alignments in a genomic region (simplified)
std::vector<AlignmentRecord> QueryRegion(const char* ntuplePath, const char* regionStr) {
 std::vector<AlignmentRecord> results;
 // Parse region (e.g., "chr1:1000-2000")
 std::string region = regionStr;
 size_t colonPos = region.find(":");
 std::string targetChr = region.substr(0, colonPos);

 size_t dashPos = region.find("-", colonPos);
 int32_t targetStart = std::stoi(region.substr(colonPos + 1, dashPos - colonPos - 1));
 int32_t targetEnd = std::stoi(region.substr(dashPos + 1));
 // Open RNTuple file
 auto ntuple = RNTupleReader::Open("Alignments", ntuplePath);

 // Efficient query using minimal fields first
 auto view = ntuple->GetView<std::string, int32_t>({"chromosome", "position"});

 // Process matching entries
 for (auto i : ntuple->GetEntryRange()) {
 auto [chr, pos] = view(i);

 if (chr == targetChr && pos >= targetStart && pos <= targetEnd) {
 // Add to results (full record would be retrieved here)
 AlignmentRecord rec;
 // ... populate record fields ...
 results.push_back(rec);
 }
 }
 return results;
}

Note on Code Samples: The code snippets included throughout this proposal are provided to
demonstrate technical understanding of the implementation approach. These are representative
examples only and will be refined and expanded in collaboration with my mentor during the
project development. The final implementation will incorporate best practices and optimizations
based on mentor feedback and initial testing.

5. Comprehensive Benchmarking
We plan to create a benchmarking framework to compare performance across formats (BAM,
CRAM, TTree-RAM, RNTuple-RAM) using standardized tests:

Region query performance with varying region sizes
File size comparisons with different compression strategies
Memory consumption patterns
Scaling behavior with increasing file sizes
Expected Benefits
Improved Query Performance: RNTuple's columnar structure accelerates genomic region
queries.
Enhanced Type Safety: RNTuple's templated interfaces provide compile-time type checking.
Better Memory Efficiency: More efficient memory mapping reduces RAM requirements.
Optimized Storage: Specialized compression and splitting strategies balance file size with query
performance.
Future-Proof Architecture: RNTuple represents ROOT's next-generation storage format

4. Timeline for GeneROOT Project: Stage 1 and Stage 2 Implementation

Time Frame Start Date End Date Task Deliverable

Week 0:
Community
Bonding

May 8, 2025 May 14,
2025

• Study GeneROOT codebase •
Set up development
environment • Initial project
planning

Project roadmap and
development setup

Week 1:
Community
Bonding

May 15,
2025

June 1,
2025

• Detailed project architecture
review • Mentor consultations •
Finalize implementation
strategy

Comprehensive project
strategy document

Week 1 (Stage
1)

June 2,
2025

June 8,
2025

• Begin reproducing TTree
implementation • Initial
optimization of ramview.C •
Start benchmarks with 9GB
BAM file

Initial benchmark
scripts and
performance baseline

Week 2 (Stage
1)

June 9,
2025

June 15,
2025

• Complete TTree
implementation reproduction •
Finalize ramview.C
optimizations • Complete 9GB
BAM file benchmarks

Optimized TTree
implementation with
benchmark results

Week 3 (Stage
1)

June 16,
2025

June 22,
2025

• Expand benchmarking to
15GB+ files • Test ZLIB
compression algorithm • Initial
performance documentation

Comprehensive
benchmarks with ZLIB
compression

Week 4 (Stage
1)

June 23,
2025

June 29,
2025

• Test LZ4 and LZMA
compression • Compare
compression performance •
Document comparative results

Comparative
compression algorithm
performance report

Buffer Week 1 June 30,
2025

July 6, 2025 • Catch up on any delayed
Stage 1 tasks • Additional
testing if needed • Further
optimization of problematic
areas

Refined Stage 1
implementation and
stable codebase

Week 5
(Transition)

July 7, 2025 July 13,
2025

• Complete Stage 1
documentation • Begin RNTuple
data model implementation •
Create initial converter
prototype

Stage 1 comprehensive
documentation

Week 6
(Transition)

July 14,
2025

July 20,
2025

• Refine RNTuple data model •
Develop converter prototype •
Prepare midterm deliverables

RNTuple converter
prototype

Midterm
Evaluation

July 21,
2025

July 25,
2025

• Submit midterm evaluation •
Review progress with mentors •
Finalize RNTuple approach

Midterm project status
and refined
implementation plan

Week 7 (Stage
2)

July 26,
2025

August 1,
2025

• Develop optimized RNTuple
converter • Implement multiple
compression options • Start
chromosome-based splitting

Optimized RNTuple
converter with
compression support

Week 8 (Stage
2)

August 2,
2025

August 8,
2025

• Complete chromosome-based
splitting • Refine converter
performance • Preliminary
RNTuple benchmarks

Chromosome-based
splitting implementation

Week 9 (Stage
2)

August 9,
2025

August 15,
2025

• Implement region-based
splitting • Develop initial query
tools • Start RNTuple
benchmarks

Region-based splitting
and query tool
prototype

Buffer Week 2 August 16,
2025

August 22,
2025

• Address remaining
implementation issues •
Additional optimization if
needed • Complete any
delayed Stage 2 tasks

Stabilized
implementation with
optimized
performance

Week 10
(Stage 2)

August 23,
2025

August 29,
2025

• Complete query tools •
Comprehensive RNTuple
benchmarks • Performance
optimization

Completed query tools
with performance
benchmarks

Week 11
(Stage 2)

August 30,
2025

August 31,
2025

• Comparative benchmarking
(TTree vs RNTuple) • Detailed
performance analysis • Finalize
documentation

Comparative
performance analysis

Final
Submission

September
1, 2025

September
1, 2025

• Submit final code • Submit
benchmark report • Submit
implementation documentation

Final project
submission package

Note: Stage 1 focuses on reproducing and optimizing the existing TTree implementation while Stage 2
develops the new RNTuple implementation. The timeline includes continuous testing throughout both

5. Contributions and Communications
5.1 Communication with Mentors
I will keep updating my mentors with weekly emails and communicate through open source chat
channels. I will also try to connect over video meetings with my mentors when they are available
and I am confused with some aspects of the projects.

5.2 Contributions

I plan to make meaningful contributions to GeneROOT by:

● Completing the reproduction and analysis of existing TTree-based benchmarks with
larger datasets

● Implementing an efficient RNTuple data model for genomic alignment data
● Developing high-performance conversion utilities between BAM/CRAM and RNTuple

formats

● Creating multiple splitting strategies (chromosome, region, read group) to optimize
access patterns

● Implementing optimized query tools leveraging RNTuple's columnar structure
● Conducting comprehensive benchmarking to quantify performance improvements
● Providing detailed documentation and analysis to guide future development

My preliminary work optimizing ramview.C has already demonstrated substantial performance
improvements, and I'm excited to extend these gains through the implementation of RNTuple for
genomic data storage.

Pull Requests:

1. Raised PR to the GeneRoot Repo with work on Ramview (Open)

6. References

● https://indico.cern.ch/event/655464/
● https://root.cern/
● https://github.com/GeneROOT
● https://root.cern/doc/v622/md_tree_ntuple_v7_doc_README.html
● https://www.htslib.org/
● https://www.internationalgenome.org/data(FOR BAM AND CRAM FILES)

https://github.com/GeneROOT/ramtools/pull/1
https://indico.cern.ch/event/655464/
https://root.cern/
https://github.com/GeneROOT
https://root.cern/doc/v622/md_tree_ntuple_v7_doc_README.html
https://www.htslib.org/
https://www.internationalgenome.org/data

	
	
	
	1. About Me
	1.1 Personal Details
	1.2 Motivation
	1.3 Time Availability

	Programming and Development Experience
	Languages and Technologies
	Relevant Experience

	Stage 1: Reproduction and Baseline Establishment
	Stage 2: RNTuple Implementation and Advanced Features
	1.1 Comprehensive Analysis of Current Compression Technologies
	CRAM Advanced Codecs

	1.2 Implementation and Testing Methodology
	2. Comprehensive File Format and Size Testing
	●Acquire and test additional files of varying sizes following My Mentor’s guidance:
	○Small (1-5GB), Medium (5-15GB), Large (15-30GB), Very Large (30GB+)
	○Test across all formats: BAM, CRAM, FASTA, FASTQ
	●Process the 15GB BAM file(HG00154.mapped.ILLUMINA.bwa.GBR.low_coverage.20101123.bam) already downloaded
	●Download additional large datasets (preferably 20GB+ files)
	●Create corresponding ROOT files with all compression methods
	3. Complete Benchmark Matrix
	●Create a comprehensive benchmark matrix:
	○File Formats: BAM vs CRAM vs ROOT (ZLIB/LZMA/LZ4)
	○File Sizes: Small vs Medium vs Large vs Very Large
	○Operations: Region queries, whole file processing, conversion times
	○Genomic Regions: Cover some complex regions to solidify the benchmarking
	●Document performance patterns as file size increases
	●Identify scaling factors and potential bottlenecks
	4. RAM Implementation Analysis
	●Analyze RAM data model for compatibility with RNTuple
	●Evaluate TTree performance characteristics at different file sizes
	●Identify performance patterns that could inform RNTuple implementation
	5. Documentation and Analysis
	●Create detailed performance graphs showing scaling behavior
	●Document all benchmark results with statistical significance
	●Prepare comprehensive report comparing results with the original GeneROOT benchmarks
	●Include solid conclusions about performance based on larger file testing

	 Transition Preparation for Stage 2
	High-Level Goal
	High-Level Goal

	
	
	
	4. Timeline for GeneROOT Project: Stage 1 and Stage 2 Implementation
	Time Frame
	Start Date
	End Date
	Task
	Deliverable
	Week 0: Community Bonding
	May 8, 2025
	May 14, 2025
	• Study GeneROOT codebase • Set up development environment • Initial project planning
	Project roadmap and development setup
	Week 1: Community Bonding
	May 15, 2025
	June 1, 2025
	• Detailed project architecture review • Mentor consultations • Finalize implementation strategy
	Comprehensive project strategy document
	Week 1 (Stage 1)
	June 2, 2025
	June 8, 2025
	• Begin reproducing TTree implementation • Initial optimization of ramview.C • Start benchmarks with 9GB BAM file
	Initial benchmark scripts and performance baseline
	Week 2 (Stage 1)
	June 9, 2025
	June 15, 2025
	• Complete TTree implementation reproduction • Finalize ramview.C optimizations • Complete 9GB BAM file benchmarks
	Optimized TTree implementation with benchmark results
	Week 3 (Stage 1)
	June 16, 2025
	June 22, 2025
	• Expand benchmarking to 15GB+ files • Test ZLIB compression algorithm • Initial performance documentation
	Comprehensive benchmarks with ZLIB compression
	Week 4 (Stage 1)
	June 23, 2025
	June 29, 2025
	• Test LZ4 and LZMA compression • Compare compression performance • Document comparative results
	Comparative compression algorithm performance report
	Buffer Week 1
	June 30, 2025
	July 6, 2025
	• Catch up on any delayed Stage 1 tasks • Additional testing if needed • Further optimization of problematic areas
	Refined Stage 1 implementation and stable codebase
	Week 5 (Transition)
	July 7, 2025
	July 13, 2025
	• Complete Stage 1 documentation • Begin RNTuple data model implementation • Create initial converter prototype
	Stage 1 comprehensive documentation
	Week 6 (Transition)
	July 14, 2025
	July 20, 2025
	• Refine RNTuple data model • Develop converter prototype • Prepare midterm deliverables
	RNTuple converter prototype
	Midterm Evaluation
	July 21, 2025
	July 25, 2025
	• Submit midterm evaluation • Review progress with mentors • Finalize RNTuple approach
	Midterm project status and refined implementation plan
	Week 7 (Stage 2)
	July 26, 2025
	August 1, 2025
	• Develop optimized RNTuple converter • Implement multiple compression options • Start chromosome-based splitting
	Optimized RNTuple converter with compression support
	Week 8 (Stage 2)
	August 2, 2025
	August 8, 2025
	• Complete chromosome-based splitting • Refine converter performance • Preliminary RNTuple benchmarks
	Chromosome-based splitting implementation
	Week 9 (Stage 2)
	August 9, 2025
	August 15, 2025
	• Implement region-based splitting • Develop initial query tools • Start RNTuple benchmarks
	Region-based splitting and query tool prototype
	Buffer Week 2
	August 16, 2025
	August 22, 2025
	• Address remaining implementation issues • Additional optimization if needed • Complete any delayed Stage 2 tasks
	Stabilized implementation with optimized performance
	Week 10 (Stage 2)
	August 23, 2025
	August 29, 2025
	• Complete query tools • Comprehensive RNTuple benchmarks • Performance optimization
	Completed query tools with performance benchmarks
	Week 11 (Stage 2)
	August 30, 2025
	August 31, 2025
	• Comparative benchmarking (TTree vs RNTuple) • Detailed performance analysis • Finalize documentation
	Comparative performance analysis
	Final Submission
	September 1, 2025
	September 1, 2025
	• Submit final code • Submit benchmark report • Submit implementation documentation
	Final project submission package
	Note: Stage 1 focuses on reproducing and optimizing the existing TTree implementation while Stage 2 develops the new RNTuple implementation. The timeline includes continuous testing throughout both
	5. Contributions and Communications

