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                                                Abstract 

This project aims to advance genomic data management by implementing ROOT's 
next-generation RNTuple format for sequence alignment storage. Beginning with validation of 
previous GeneROOT benchmarks showing 4x performance gains with TTree, we will then 
extend these capabilities with RNTuple technology. Genomic sequencing data volumes are 
growing exponentially, creating performance bottlenecks in traditional formats. RNTuple's 
improved memory mapping, type safety through templated interfaces, and parallelization 
capabilities position it as an ideal solution. We will systematically compare compression 
algorithms, implement file splitting strategies, and benchmark against established formats. The 
project will deliver optimized tools for handling rapidly growing genomic datasets, potentially 
establishing a new standard for high-performance genomic data analysis. 
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1. About Me 

1.1 Personal Details 

● Name:         Aditya Pandey 
● Email:         adityapand3y666@gmail.com 
● GitHub:       AdityaPandeyCN 
● Location:    Ranchi, India 
● Blog:           adityapandeycn.github.io/personalblog/ 

1.2 Motivation 

My experience with C++ programming and low-level optimization makes me well-suited for this 
project. The skills I developed during my previous GSoC, particularly in validation, error 
handling, and creating simulation-ready models, will help me in my work with GeneROOT. My 
Rubik's cube solver project demonstrates my ability to implement practical solutions to complex 
problems, showcasing my technical creativity and problem-solving approach. 

1.3 Time Availability 

I am fully committed to dedicating 60 hours per week to this project during the initial GSoC 
period, leveraging my complete availability during summer break from May to August. After 
August, I will maintain a consistent 40-hour weekly commitment, with no other prior 
commitments. 

1.4 Technical Profile 

Programming and Development Experience 

I have over 2 years of programming experience particularly relevant to this project: 

Languages and Technologies 

● Languages: C++, Python, C, Rust, JavaScript 
● Libraries/Frameworks: Django, React.js 
● Optimization Techniques: Algorithmic optimization 

Relevant Experience 

● Google Summer of Code with INCF: Developed an interactive Python tool with robust 
error handling and validation checks for neuronal morphology conversion 

My GSoC 2024 work 

● Strong problem-solving skills: Solved 150+ problems on LeetCode 
● Qualified for the Pre-Regional Mathematics Olympiad( 1st stage to IMO) 
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2. Description 

This project extends GeneROOT by implementing ROOT's next-generation RNTuple format for 
genomic data storage and analysis. It begins by reproducing previous benchmark results, then 
develops an RNTuple-based system to replace the TTree implementation used in earlier 
GeneROOT work. The project will create conversion utilities between standard genomic formats 
(BAM/CRAM) and RNTuple, benchmark different compression algorithms, explore file splitting 
strategies, and document performance comparisons. 

 

3. Implementation Plan 

The project will be executed in two distinct stages: 

3.1 Overview 

Stage 1: Reproduction and Baseline Establishment 

The first stage focuses on reproducing previous GeneROOT results and establishing the 
foundation for RNTuple implementation: 

1. Set up the development environment with ROOT, htslib, and necessary genomic tools 
2. Reproduce the TTree-based ROOT Alignment Maps (RAM) implementation from 

previous GeneROOT work 
3. Verify and document performance comparisons between BAM/CRAM formats and the 

TTree implementation 
4. Investigate and compare Samtools’ latest BAM/CRAM compression strategies with the 

ROOT Alignment Maps (RAM)   
5. Benchmark different compression strategies (ZLIB, LZMA, LZ4) with the existing TTree 

format 
6. Develop and test the basic genomic data model design that will later be implemented 

with RNTuple 

Stage 2: RNTuple Implementation and Advanced Features 

The second stage involves implementing the RNTuple storage backend and developing 
advanced features: 

1. Implement a genomic data model using RNTuple's templated field system 
2. Develop conversion utilities between BAM/CRAM formats and the RNTuple 

implementation 
3. Implement and test different file splitting strategies (by chromosome, region, read group) 
4. Create efficient query tools for genomic region retrieval 

 



 

5. Conduct comprehensive benchmarking comparing RNTuple performance against both 
TTree and traditional formats 

6. Produce final comparison report with performance analysis and recommendations 

3.2 Detailed Description 

I plan to execute the conversion part in 2 stages. 

                  Stage 1: Reproduction and Baseline Establishment 

High-Level Goal 

● To reproduce and validate existing GeneROOT results with the TTree format 
● To establish reliable baseline metrics for comparing future RNTuple implementations 
● To identify and address specific performance bottlenecks in the current implementation 
● To optimize the existing codebase before transitioning to the new format 

                                                                  Workflow 
  
                                                              Setup Environment 
                                                                        ↓  
                                                                Get Test Data 
                                                                        ↓ 
                                                               Implement TTree  
                                                                        ↓ 
                                           Investigate Samtools Compression Strategies 
                                                                        ↓ 
                                                               Find Bottlenecks      
                                                     ↙                ↓                  ↘ 
                          Optimize Search             Add Batch             Improve Resource Use 
                                                                 Processing     
                                                     ↘                ↓                 ↙ 
                                                               Test & Validate  
                                                                        ↓ 
                                                             Prepare for Stage 2                                                            
 

 

Completed Work 

I have already made significant progress on reproducing and optimizing the existing 
GeneROOT implementation: 

Environment and Dataset Preparation: 

● Successfully set up the development environment with ROOT and htslib 
● Discovered and leveraged existing tools in the ramtools repository 
● Acquired test files of varying sizes for comprehensive benchmarking: 

 



 

○ 9GB BAM file (Pond-154926.bam) 
○ 15GB BAM file 

(HG00154.mapped.ILLUMINA.bwa.GBR.low_coverage.20101123.bam) 
● Created ROOT files with different compression algorithms (ZLIB, LZ4, LZMA)    
● Created a PR to the GeneROOT repository with optimized ramview implementation 

Key Code Optimizations Implemented 

High-Level Goal 

My optimizations target critical performance bottlenecks in genomic data processing, focusing 
on improving query speed while maintaining memory efficiency for large datasets. 

                                       An overview of the changes in ramview 

Advanced Search Algorithm  

Problem: The original GeneROOT implementation uses a linear search to find genomic 
positions, which becomes extremely inefficient for large files where the target region might be 
millions of entries away from the starting point. This results in unnecessary I/O operations and 
slow queries, especially when users want to examine distant genomic regions. 

Solution: I replaced the linear search with a two-phase approach combining exponential and 
binary search algorithms. This dramatically reduces the number of entries that need to be 
examined to find a specific genomic region: 

// ORIGINAL: Simple linear search through all entries 
for (; start_entry < end_entry; start_entry++) { 
   t->GetEntry(start_entry); 
   if (r->GetPOS() + r->GetSEQLEN() > range_start) { 
      break; 
   } 
} 
 
// OPTIMIZED: Exponential search followed by binary search 
Long64_t jump = 1; 
Long64_t curr = start_entry; 
while (curr < end_entry) { 
   t->GetEntry(curr); 
   if (r->GetPOS() + r->GetSEQLEN() > range_start) { 
      found_start = true; 
      break; 
   } 
   start_entry = curr; 
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   jump *= 2; 
   curr = std::min(curr + jump, end_entry - 1); 
} 

Batch Processing: Problem: The original implementation processes genomic entries one at a 
time, requiring a separate disk I/O operation for each entry. For large genomic regions 
containing thousands or millions of entries, this creates a severe I/O bottleneck, with most 
processing time spent waiting for disk access rather than analyzing data. 

Solution: I implemented dynamic batch processing that loads multiple entries in a single 
operation, drastically reducing I/O overhead: 

// NEW: Adaptive batch sizing function 
inline int getOptimalBatchSize(Long64_t regionSize) { 
    if (regionSize < 100) return 20; 
    if (regionSize < 1000) return 100; 
    if (regionSize < 10000) return 1000; 
    if (regionSize < 100000) return 5000; 
    return 10000; 
} 
// Batch processing implementation 
const int BATCH_SIZE = getOptimalBatchSize(end_entry - start_entry); 
std::vector<Long64_t> entryBuffer(BATCH_SIZE); 
// Process entries in optimally-sized batches 
while (j < end_entry) { 
    // Fill the buffer with next batch of entries 
    int batchEntries = 0; 
    for (int i = 0; i < BATCH_SIZE && j < end_entry; i++, j++) { 
        entryBuffer[i] = j; 
        batchEntries++; 
    } 
    // Process the entire batch at once 
    for (int i = 0; i < batchEntries; i++) { 
        t->GetEntry(entryBuffer[i]); 
        // Process entry... 
    } 
} 

Resource Optimization 

Problem: The original code uses fixed memory allocations regardless of file size, which is 
inefficient for both small and large datasets. For small files, this wastes memory; for large 
genome files (often 10-30GB), it causes excessive paging and poor performance. 

Solution: I implemented dynamic resource allocation that scales based on file size. 

// NEW: File-size based optimizations 

 



 

Long64_t fileSize = f->GetSize(); 
if (fileSize > 1024*1024*1024) { // 1 GB 
   t->SetMaxVirtualSize(256*1024*1024); // 256 MB for large files 
} 

Selective Branch Management:  

Problem: Genomic data is complex with many fields, but most queries only need a small subset 
of this data. The original implementation loads all data branches even when only position 
information is needed, wasting memory and I/O bandwidth. 

Solution: I implemented selective branch loading to focus resources on only the necessary 
data. 

// ORIGINAL: Basic branch enabling 
if (b->GetSplitLevel() > 0) 
   t->SetBranchStatus("RAMRecord.*", 0); 
 
// OPTIMIZED: More control 
t->SetBranchStatus("*", 0); // Disable all branches 
t->SetBranchStatus("RAMRecord.v_refid", 1); 
t->SetBranchStatus("RAMRecord.v_pos", 1); 
t->SetBranchStatus("RAMRecord.v_lseq", 1); 

 

                                 Result of benchmarking region view of RAM files 

 

 



 

 

Note:- All the scripts used for benchmarking can be found here 

 
                                  Remaining Work for Stage 1 
High-Level Goal 
            

● To comprehensively test the optimized TTree implementation across various file sizes 
and formats 

● Investigate and compare the latest compression strategies used by Samtools for 
conversions to BAM, with RAM (ROOT Alignment Maps) 

● To establish standardized benchmark protocols for consistent performance measurement 
● To document performance patterns and scaling behaviors to inform RNTuple 

implementation 
● To identify specific areas where RNTuple could provide the greatest performance 

improvements 

1. Analysis of Latest Compression Strategies used by Samtools 

High-Level Goal 

● Evaluate modern compression techniques from Samtools/HTSlib for genomic data. 
● Integrate the most efficient methods into ROOT’s storage system for optimal space and 

speed. 
● Enable flexible compression choices to suit different genomic workflows and data sizes. 

Analysis Strategy 

1.1 Comprehensive Analysis of Current Compression Technologies 

I will conduct a thorough examination of Samtools/HTSlib compression implementations, 
focusing on: 

BGZF (Blocked GZIP Format) in BAM Files 

● Block structure analysis: Study the 64KB block architecture that enables random access 
while maintaining gzip compatibility 

● Parameter tuning: Investigate the nine compression levels (1-9) and their impact on 
genomic data 

● Multi-threading implementation: Analyze how bgzf_mt API implements parallel 
compression/decompression 

CRAM Advanced Codecs 
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● rANS (Asymmetric Numeral Systems): Study both 4×8 (CRAM 2.1/3.0) and 4×16 
implementations 

● External codecs: Analyze bzip2 and LZMA integration techniques 
● CRAM 3.1 transforms: Examine advanced techniques like Nx16 interleaving, RLE, 

bit-packing, and striped rANS 

1.2 Implementation and Testing Methodology 

My approach to comparing these with ROOT's compression capabilities will include: 

● Codec library integration: Evaluate feasibility of porting or interfacing with HTSlib's 
compression libraries 

● ROOT-native implementation: Develop ROOT-compatible versions of key algorithms 
where direct integration isn't possible 

● Reference-based compression: Implement specialized reference sequence handling 
similar to CRAM 

● Adaptive selection: Create a dynamic system to select optimal compression methods 
based on data characteristics 

2. Comprehensive File Format and Size Testing 

● Acquire and test additional files of varying sizes following My Mentor’s guidance: 
○ Small (1-5GB), Medium (5-15GB), Large (15-30GB), Very Large (30GB+) 
○ Test across all formats: BAM, CRAM, FASTA, FASTQ 

● Process the 15GB BAM 
file(HG00154.mapped.ILLUMINA.bwa.GBR.low_coverage.20101123.bam) already downloaded 

● Download additional large datasets (preferably 20GB+ files) 
● Create corresponding ROOT files with all compression methods 

3. Complete Benchmark Matrix 

● Create a comprehensive benchmark matrix: 
○ File Formats: BAM vs CRAM vs ROOT (ZLIB/LZMA/LZ4) 
○ File Sizes: Small vs Medium vs Large vs Very Large 
○ Operations: Region queries, whole file processing, conversion times 
○ Genomic Regions: Cover some complex regions to solidify the benchmarking 

● Document performance patterns as file size increases 
● Identify scaling factors and potential bottlenecks 

4. RAM Implementation Analysis 

● Analyze RAM data model for compatibility with RNTuple 
● Evaluate TTree performance characteristics at different file sizes 
● Identify performance patterns that could inform RNTuple implementation 

 



 

5. Documentation and Analysis 

● Create detailed performance graphs showing scaling behavior 
● Document all benchmark results with statistical significance 
● Prepare comprehensive report comparing results with the original GeneROOT 

benchmarks 
● Include solid conclusions about performance based on larger file testing 

                             Transition Preparation for Stage 2 

High-Level Goal 

● To analyze the optimized TTree codebase for insights applicable to RNTuple design 
● To identify critical data access patterns and performance hotspots that affect genomic 

data processing 
● To design adapter interfaces that will facilitate migration between implementations 
● To create a prototype RNTuple data model based on TTree implementation insights 

 
                     Stage 2: RNTuple Implementation for Genomic Data 
High-Level Goal 

● To create an optimized representation of genomic alignment data balancing 
completeness with performance 

● To leverage RNTuple's type-safe field system to prevent common programming errors 
● To organize genomic information in a columnar structure enabling efficient memory 

access 
● To design a model that naturally accommodates the hierarchical nature of genomic data 

                                                                  Workflow 
  
                                                               Plan Stage-2 
                                                                        ↓  
                                                      Genomic Data Model-RNTuple 
                                                                        ↓ 
                                                          Conversion-BAM/CRAM 
                                                                        ↓ 
                                                               File Splitting      
                                                     ↙                ↓                  ↘ 
                          By Chromosome             By Region            By Read Group 
                                                     ↘                ↓                 ↙ 
                                                                Query Tools      
                                                     ↙                ↓                  ↘ 
                          Implement Region        Optimize Access     Memory Efficient 
                           Queries                            Patterns                Results 
                                                      ↘                 ↓                  ↙ 

 



 
                                                               Benchmarking 
                                                                        ↓ 
                                                                Final Report                           
1. Data Model Design    

                                                      

 
We plan to create a specialized RNTuple data model that maps genomic alignment data (from 
BAM/CRAM formats) to RNTuple's type-safe field system. Each alignment record contains 
essential genomic information in a type-safe, columnar structure. 
                                                           Code Snippet 
// Define RNTuple model for genomic alignment data 
std::shared_ptr<RNTupleModel> CreateAlignmentModel() { 
    auto model = RNTupleModel::Create(); 
     
    // Core alignment fields 
    model->MakeField<std::string>("name");       // Read name 
    model->MakeField<std::string>("chromosome"); // Reference name 
    model->MakeField<int32_t>("position");       // Alignment position 
    model->MakeField<uint16_t>("flags");         // BAM flags 
    model->MakeField<uint8_t>("mapq");           // Mapping quality 
    model->MakeField<std::string>("cigar");      // CIGAR string 
    model->MakeField<std::string>("sequence");   // Read sequence 
    model->MakeField<std::string>("quality");    // Base qualities 
     
    // Tags stored as key-value pairs 
    model->MakeField<std::vector<std::pair<std::string, std::string>>>("tags"); 
     
    return model; 
} 

 
This model leverages RNTuple's templated interfaces to provide compile-time type checking, 
preventing common errors in genomic data processing. The columnar structure allows efficient 

 



 

memory access patterns for specific fields, which is particularly valuable for genomic queries 
that often access only chromosome and position information. 
2. Optimized Conversion Pipeline 
 
High-Level Goal 

● To efficiently transform standard genomic formats (BAM/CRAM) into RNTuple storage 
● To handle massive data volumes (10-30GB per sample) with minimal computational 

overhead 
● To provide configurable compression options balancing file size against processing 

speed 
● To implement memory-efficient batch processing for large genomic datasets 

          

 

We plan to develop efficient converters between standard genomic formats (BAM/CRAM) and 
RNTuple storage. The implementation uses htslib for parsing input files and incorporates 
batched processing and memory management techniques to handle massive genomic datasets 
(often 10-30GB per sample). 

// Core conversion function (simplified) 
int ConvertToRNTuple(const char* inputFile, const char* outputFile) { 
    // Open input CRAM/BAM file 
    samFile* in = sam_open(inputFile, "r"); 
    bam_hdr_t* header = sam_hdr_read(in); 
    // Create RNTuple model and writer 
    auto model = CreateAlignmentModel(); 
    auto ntuple = RNTupleWriter::Recreate(std::move(model), "Alignments", 

outputFile); 
    // Get field handles 
    auto name = 

ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("name"); 
    auto chromosome = 

ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("chromosome"); 
    auto position = 

ntuple->GetModel()->GetDefaultEntry()->Get<int32_t>("position"); 

 



 

    // ... get other fields ... 
    // Process alignments 
    bam1_t* aln = bam_init1(); 
    while (sam_read1(in, header, aln) >= 0) { 
        // Extract data from BAM record 
        *name = bam_get_qname(aln); 
        *chromosome = header->target_name[aln->core.tid]; 
        *position = aln->core.pos + 1; 
        // ... extract other fields ... 
        // Write to RNTuple 
        ntuple->Fill(); 
    } 
    // Cleanup 
    bam_destroy1(aln); 
    bam_hdr_destroy(header); 
    sam_close(in); 
     
    return 0; 
} 

The converter supports various compression algorithms (ZLIB, LZMA, LZ4, ZSTD) with 
configurable settings, allowing users to balance file size against processing speed: 
 
                                                           Code Snippet 
// Configure RNTuple compression options 
RNTupleWriter::RNTupleWriteOptions ConfigureCompression(const std::string& algorithm) { 
    RNTupleWriter::RNTupleWriteOptions options; 
     
    if (algorithm == "zlib") { 
        options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kZLIB, 6); 
    } else if (algorithm == "lzma") { 
        options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kLZMA, 9); 
    } else if (algorithm == "lz4") { 
        options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kLZ4, 4); 
    } else if (algorithm == "zstd") { 
        options.SetCompression(ROOT::RCompressionSetting::EAlgorithm::kZSTD, 5); 
    } 
     
    // Configure optimal cluster size for genomic data 
    options.SetNElements(64000); 
     
    return options; 
} 

3. Advanced Splitting Strategies 
High-Level Goal 

 



 

● To optimize both storage organization and query performance through intelligent data 
partitioning 

● To address different access patterns common in genomic research (chromosome-level, 
region-specific) 

● To enable parallel processing opportunities through logical data separation 
● To reduce I/O overhead when analyzing specific genomic regions 

                                 
 
We plan to implement multiple file organization strategies to optimize storage and query 
performance. The chromosome-based splitting creates separate files for each chromosome, 
enabling parallel processing and reducing I/O when analyzing specific genomic regions: 
                         
                                                            Code Snippet  
int SplitByChr(const char* inputFile, const char* outputPrefix) { 
    // Open input file 
    samFile* in = sam_open(inputFile, "r"); 
    if (!in) return -1; 
     
    bam_hdr_t* header = sam_hdr_read(in); 
    if (!header) { 
        sam_close(in); 
        return -1; 
    } 
    // Map of chromosome to RNTuple writers 
    std::map<std::string, std::shared_ptr<RNTupleWriter>> writers; 
    // Process alignments 
    bam1_t* aln = bam_init1(); 
    while (sam_read1(in, header, aln) >= 0) { 
        // Skip unmapped reads 
        if (aln->core.tid < 0) continue; 
        std::string chr = header->target_name[aln->core.tid]; 
        // Create new writer for this chromosome if needed 
        if (writers.find(chr) == writers.end()) { 
            auto model = CreateAlignmentModel(); 
            std::string filename = std::string(outputPrefix) + "/" + chr + ".root"; 
            writers[chr] = RNTupleWriter::Recreate(std::move(model), "Alignments", 

filename); 
        } 

 



 

        // Get the writer for this chromosome 
        auto& ntuple = writers[chr]; 
        // Fill data fields 
        *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("name") = 

bam_get_qname(aln); 
        *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("chromosome") = chr; 
        *ntuple->GetModel()->GetDefaultEntry()->Get<int32_t>("position") = aln->core.pos + 

1; 
        *ntuple->GetModel()->GetDefaultEntry()->Get<uint16_t>("flags") = aln->core.flag; 
        *ntuple->GetModel()->GetDefaultEntry()->Get<uint8_t>("mapq") = aln->core.qual; 
        // Extract and store sequence 
        int l_seq = aln->core.l_qseq; 
        std::string sequence; 
        sequence.reserve(l_seq); 
        uint8_t* seq = bam_get_seq(aln); 
        for (int i = 0; i < l_seq; i++) { 
            sequence.push_back("=ACMGRSVTWYHKDBN"[bam_seqi(seq, i)]); 
        } 
        *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("sequence") = sequence; 
        // Extract quality scores 
        std::string quality; 
        quality.reserve(l_seq); 
        uint8_t* qual = bam_get_qual(aln); 
        for (int i = 0; i < l_seq; i++) { 
            quality.push_back(33 + qual[i]); 
        } 
        *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("quality") = quality; 
        // Extract CIGAR string 
        uint32_t* cigar = bam_get_cigar(aln); 
        std::string cigarStr; 
        for (uint32_t i = 0; i < aln->core.n_cigar; ++i) { 
            cigarStr += std::to_string(bam_cigar_oplen(cigar[i])); 
            cigarStr += bam_cigar_opchr(cigar[i]); 
        } 
        *ntuple->GetModel()->GetDefaultEntry()->Get<std::string>("cigar") = cigarStr; 
        // Write record 
        ntuple->Fill(); 
    } 
    // Cleanup 
    bam_destroy1(aln); 
    bam_hdr_destroy(header); 
    sam_close(in); 
    return 0; 
} 

Beyond chromosome-based splitting, we'll also implement: 
 

● Region-based splitting: Divides the genome into configurable regions (fixed-size or 
feature-based) 

● Read group splitting: Separates multi-sample datasets, particularly useful in population 
genomics studies 

 



 

4. High-Performance Query Engine 

High-Level Goal 

● To fully leverage RNTuple's columnar structure for rapid retrieval of genomic regions 
● To implement a two-phase query approach minimizing unnecessary data access 
● To provide memory-efficient handling of large result sets common in genomic analysis 
● To enable complex filtering based on alignment properties without performance penalties 

 
This two-phase query approach (first scanning minimal fields, then retrieving full records) 
significantly accelerates genomic region queries by reducing the amount of data accessed. The 
implementation also provides memory-efficient handling of large result sets and support for 
filtering based on alignment properties. 

                         
                                                         
                                                           Code Snippet 
// Query alignments in a genomic region (simplified) 
std::vector<AlignmentRecord> QueryRegion(const char* ntuplePath, const char* regionStr) { 
    std::vector<AlignmentRecord> results; 
    // Parse region (e.g., "chr1:1000-2000") 
    std::string region = regionStr; 
    size_t colonPos = region.find(":"); 
    std::string targetChr = region.substr(0, colonPos); 
     
    size_t dashPos = region.find("-", colonPos); 
    int32_t targetStart = std::stoi(region.substr(colonPos + 1, dashPos - colonPos - 1)); 
    int32_t targetEnd = std::stoi(region.substr(dashPos + 1)); 
    // Open RNTuple file 
    auto ntuple = RNTupleReader::Open("Alignments", ntuplePath); 
     
    // Efficient query using minimal fields first 
    auto view = ntuple->GetView<std::string, int32_t>({"chromosome", "position"}); 

 



 

     
    // Process matching entries 
    for (auto i : ntuple->GetEntryRange()) { 
        auto [chr, pos] = view(i); 
         
        if (chr == targetChr && pos >= targetStart && pos <= targetEnd) { 
            // Add to results (full record would be retrieved here) 
            AlignmentRecord rec; 
            // ... populate record fields ... 
            results.push_back(rec); 
        } 
    } 
    return results; 
} 

 
Note on Code Samples: The code snippets included throughout this proposal are provided to 
demonstrate technical understanding of the implementation approach. These are representative 
examples only and will be refined and expanded in collaboration with my mentor during the 
project development. The final implementation will incorporate best practices and optimizations 
based on mentor feedback and initial testing. 
 
5. Comprehensive Benchmarking 
We plan to create a benchmarking framework to compare performance across formats (BAM, 
CRAM, TTree-RAM, RNTuple-RAM) using standardized tests: 
 
Region query performance with varying region sizes 
File size comparisons with different compression strategies 
Memory consumption patterns 
Scaling behavior with increasing file sizes 
Expected Benefits 
Improved Query Performance: RNTuple's columnar structure accelerates genomic region 
queries. 
Enhanced Type Safety: RNTuple's templated interfaces provide compile-time type checking. 
Better Memory Efficiency: More efficient memory mapping reduces RAM requirements. 
Optimized Storage: Specialized compression and splitting strategies balance file size with query 
performance. 
Future-Proof Architecture: RNTuple represents ROOT's next-generation storage format 

 

 

 

 



 

4.  Timeline for GeneROOT Project: Stage 1 and Stage 2 Implementation 

Time Frame Start Date End Date Task Deliverable 

Week 0: 
Community 
Bonding 

May 8, 2025 May 14, 
2025 

• Study GeneROOT codebase • 
Set up development 
environment • Initial project 
planning 

Project roadmap and 
development setup 

Week 1: 
Community 
Bonding 

May 15, 
2025 

June 1, 
2025 

• Detailed project architecture 
review • Mentor consultations • 
Finalize implementation 
strategy 

Comprehensive project 
strategy document 

Week 1 (Stage 
1) 

June 2, 
2025 

June 8, 
2025 

• Begin reproducing TTree 
implementation • Initial 
optimization of ramview.C • 
Start benchmarks with 9GB 
BAM file 

Initial benchmark 
scripts and 
performance baseline 

Week 2 (Stage 
1) 

June 9, 
2025 

June 15, 
2025 

• Complete TTree 
implementation reproduction • 
Finalize ramview.C 
optimizations • Complete 9GB 
BAM file benchmarks 

Optimized TTree 
implementation with 
benchmark results 

Week 3 (Stage 
1) 

June 16, 
2025 

June 22, 
2025 

• Expand benchmarking to 
15GB+ files • Test ZLIB 
compression algorithm • Initial 
performance documentation 

Comprehensive 
benchmarks with ZLIB 
compression 

Week 4 (Stage 
1) 

June 23, 
2025 

June 29, 
2025 

• Test LZ4 and LZMA 
compression • Compare 
compression performance • 
Document comparative results 

Comparative 
compression algorithm 
performance report 

 



 

Buffer Week 1 June 30, 
2025 

July 6, 2025 • Catch up on any delayed 
Stage 1 tasks • Additional 
testing if needed • Further 
optimization of problematic 
areas 

Refined Stage 1 
implementation and 
stable codebase 

Week 5 
(Transition) 

July 7, 2025 July 13, 
2025 

• Complete Stage 1 
documentation • Begin RNTuple 
data model implementation • 
Create initial converter 
prototype 

Stage 1 comprehensive 
documentation 

Week 6 
(Transition) 

July 14, 
2025 

July 20, 
2025 

• Refine RNTuple data model • 
Develop converter prototype • 
Prepare midterm deliverables 

RNTuple converter 
prototype 

Midterm 
Evaluation 

July 21, 
2025 

July 25, 
2025 

• Submit midterm evaluation • 
Review progress with mentors • 
Finalize RNTuple approach 

Midterm project status 
and refined 
implementation plan 

Week 7 (Stage 
2) 

July 26, 
2025 

August 1, 
2025 

• Develop optimized RNTuple 
converter • Implement multiple 
compression options • Start 
chromosome-based splitting 

Optimized RNTuple 
converter with 
compression support 

Week 8 (Stage 
2) 

August 2, 
2025 

August 8, 
2025 

• Complete chromosome-based 
splitting • Refine converter 
performance • Preliminary 
RNTuple benchmarks 

Chromosome-based 
splitting implementation 

Week 9 (Stage 
2) 

August 9, 
2025 

August 15, 
2025 

• Implement region-based 
splitting • Develop initial query 
tools • Start RNTuple 
benchmarks 

Region-based splitting 
and query tool 
prototype 

 



 

Buffer Week 2 August 16, 
2025 

August 22, 
2025 

• Address remaining 
implementation issues • 
Additional optimization if 
needed • Complete any 
delayed Stage 2 tasks 

Stabilized 
implementation with 
optimized 
performance 

Week 10 
(Stage 2) 

August 23, 
2025 

August 29, 
2025 

• Complete query tools • 
Comprehensive RNTuple 
benchmarks • Performance 
optimization 

Completed query tools 
with performance 
benchmarks 

Week 11 
(Stage 2) 

August 30, 
2025 

August 31, 
2025 

• Comparative benchmarking 
(TTree vs RNTuple) • Detailed 
performance analysis • Finalize 
documentation 

Comparative 
performance analysis 

Final 
Submission 

September 
1, 2025 

September 
1, 2025 

• Submit final code • Submit 
benchmark report • Submit 
implementation documentation 

Final project 
submission package 

Note: Stage 1 focuses on reproducing and optimizing the existing TTree implementation while Stage 2 
develops the new RNTuple implementation. The timeline includes continuous testing throughout both  

5. Contributions and Communications 
5.1 Communication with Mentors 
I will keep updating my mentors with weekly emails and communicate through open source chat 
channels. I will also try to connect over video meetings with my mentors when they are available 
and I am confused with some aspects of the projects. 
 
5.2 Contributions 

I plan to make meaningful contributions to GeneROOT by: 

● Completing the reproduction and analysis of existing TTree-based benchmarks with 
larger datasets 

● Implementing an efficient RNTuple data model for genomic alignment data 
● Developing high-performance conversion utilities between BAM/CRAM and RNTuple 

formats 

 



 

● Creating multiple splitting strategies (chromosome, region, read group) to optimize 
access patterns 

● Implementing optimized query tools leveraging RNTuple's columnar structure 
● Conducting comprehensive benchmarking to quantify performance improvements 
● Providing detailed documentation and analysis to guide future development 

My preliminary work optimizing ramview.C has already demonstrated substantial performance 
improvements, and I'm excited to extend these gains through the implementation of RNTuple for 
genomic data storage. 

 

Pull Requests: 

1. Raised PR to the GeneRoot Repo with work on Ramview (Open) 

 

6. References  
   

●   https://indico.cern.ch/event/655464/ 
●    https://root.cern/ 
●    https://github.com/GeneROOT 
●    https://root.cern/doc/v622/md_tree_ntuple_v7_doc_README.html 
●    https://www.htslib.org/ 
●    https://www.internationalgenome.org/data(FOR BAM AND CRAM FILES) 

 
 
 
 
 
 
 
 

 

https://github.com/GeneROOT/ramtools/pull/1
https://indico.cern.ch/event/655464/
https://root.cern/
https://github.com/GeneROOT
https://root.cern/doc/v622/md_tree_ntuple_v7_doc_README.html
https://www.htslib.org/
https://www.internationalgenome.org/data

	                              
	 
	 
	1. About Me 
	1.1 Personal Details 
	1.2 Motivation 
	1.3 Time Availability 

	Programming and Development Experience 
	Languages and Technologies 
	Relevant Experience 

	Stage 1: Reproduction and Baseline Establishment 
	Stage 2: RNTuple Implementation and Advanced Features 
	1.1 Comprehensive Analysis of Current Compression Technologies 
	CRAM Advanced Codecs 

	1.2 Implementation and Testing Methodology 
	2. Comprehensive File Format and Size Testing 
	●Acquire and test additional files of varying sizes following My Mentor’s guidance: 
	○Small (1-5GB), Medium (5-15GB), Large (15-30GB), Very Large (30GB+) 
	○Test across all formats: BAM, CRAM, FASTA, FASTQ 
	●Process the 15GB BAM file(HG00154.mapped.ILLUMINA.bwa.GBR.low_coverage.20101123.bam) already downloaded 
	●Download additional large datasets (preferably 20GB+ files) 
	●Create corresponding ROOT files with all compression methods 
	3. Complete Benchmark Matrix 
	●Create a comprehensive benchmark matrix: 
	○File Formats: BAM vs CRAM vs ROOT (ZLIB/LZMA/LZ4) 
	○File Sizes: Small vs Medium vs Large vs Very Large 
	○Operations: Region queries, whole file processing, conversion times 
	○Genomic Regions: Cover some complex regions to solidify the benchmarking 
	●Document performance patterns as file size increases 
	●Identify scaling factors and potential bottlenecks 
	4. RAM Implementation Analysis 
	●Analyze RAM data model for compatibility with RNTuple 
	●Evaluate TTree performance characteristics at different file sizes 
	●Identify performance patterns that could inform RNTuple implementation 
	5. Documentation and Analysis 
	●Create detailed performance graphs showing scaling behavior 
	●Document all benchmark results with statistical significance 
	●Prepare comprehensive report comparing results with the original GeneROOT benchmarks 
	●Include solid conclusions about performance based on larger file testing 

	                             Transition Preparation for Stage 2 
	High-Level Goal 
	High-Level Goal 


	 
	 
	 
	4.  Timeline for GeneROOT Project: Stage 1 and Stage 2 Implementation 
	Time Frame 
	Start Date 
	End Date 
	Task 
	Deliverable 
	Week 0: Community Bonding 
	May 8, 2025 
	May 14, 2025 
	• Study GeneROOT codebase • Set up development environment • Initial project planning 
	Project roadmap and development setup 
	Week 1: Community Bonding 
	May 15, 2025 
	June 1, 2025 
	• Detailed project architecture review • Mentor consultations • Finalize implementation strategy 
	Comprehensive project strategy document 
	Week 1 (Stage 1) 
	June 2, 2025 
	June 8, 2025 
	• Begin reproducing TTree implementation • Initial optimization of ramview.C • Start benchmarks with 9GB BAM file 
	Initial benchmark scripts and performance baseline 
	Week 2 (Stage 1) 
	June 9, 2025 
	June 15, 2025 
	• Complete TTree implementation reproduction • Finalize ramview.C optimizations • Complete 9GB BAM file benchmarks 
	Optimized TTree implementation with benchmark results 
	Week 3 (Stage 1) 
	June 16, 2025 
	June 22, 2025 
	• Expand benchmarking to 15GB+ files • Test ZLIB compression algorithm • Initial performance documentation 
	Comprehensive benchmarks with ZLIB compression 
	Week 4 (Stage 1) 
	June 23, 2025 
	June 29, 2025 
	• Test LZ4 and LZMA compression • Compare compression performance • Document comparative results 
	Comparative compression algorithm performance report 
	Buffer Week 1 
	June 30, 2025 
	July 6, 2025 
	• Catch up on any delayed Stage 1 tasks • Additional testing if needed • Further optimization of problematic areas 
	Refined Stage 1 implementation and stable codebase 
	Week 5 (Transition) 
	July 7, 2025 
	July 13, 2025 
	• Complete Stage 1 documentation • Begin RNTuple data model implementation • Create initial converter prototype 
	Stage 1 comprehensive documentation 
	Week 6 (Transition) 
	July 14, 2025 
	July 20, 2025 
	• Refine RNTuple data model • Develop converter prototype • Prepare midterm deliverables 
	RNTuple converter prototype 
	Midterm Evaluation 
	July 21, 2025 
	July 25, 2025 
	• Submit midterm evaluation • Review progress with mentors • Finalize RNTuple approach 
	Midterm project status and refined implementation plan 
	Week 7 (Stage 2) 
	July 26, 2025 
	August 1, 2025 
	• Develop optimized RNTuple converter • Implement multiple compression options • Start chromosome-based splitting 
	Optimized RNTuple converter with compression support 
	Week 8 (Stage 2) 
	August 2, 2025 
	August 8, 2025 
	• Complete chromosome-based splitting • Refine converter performance • Preliminary RNTuple benchmarks 
	Chromosome-based splitting implementation 
	Week 9 (Stage 2) 
	August 9, 2025 
	August 15, 2025 
	• Implement region-based splitting • Develop initial query tools • Start RNTuple benchmarks 
	Region-based splitting and query tool prototype 
	Buffer Week 2 
	August 16, 2025 
	August 22, 2025 
	• Address remaining implementation issues • Additional optimization if needed • Complete any delayed Stage 2 tasks 
	Stabilized implementation with optimized performance 
	Week 10 (Stage 2) 
	August 23, 2025 
	August 29, 2025 
	• Complete query tools • Comprehensive RNTuple benchmarks • Performance optimization 
	Completed query tools with performance benchmarks 
	Week 11 (Stage 2) 
	August 30, 2025 
	August 31, 2025 
	• Comparative benchmarking (TTree vs RNTuple) • Detailed performance analysis • Finalize documentation 
	Comparative performance analysis 
	Final Submission 
	September 1, 2025 
	September 1, 2025 
	• Submit final code • Submit benchmark report • Submit implementation documentation 
	Final project submission package 
	Note: Stage 1 focuses on reproducing and optimizing the existing TTree implementation while Stage 2 develops the new RNTuple implementation. The timeline includes continuous testing throughout both  
	5. Contributions and Communications 


