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PROJECT DETAILS 

OVERVIEW 

Automatic Differentiation (AD) is a computational technique that enables efficient and precise 

evaluation of derivatives for functions expressed in code. Unlike numerical differentiation, which 

suffers from approximation errors, or symbolic differentiation, which can be computationally 

expensive, AD systematically applies the chain rule to compute gradients with minimal overhead. 

Clad is a Clang-based automatic differentiation tool that transforms C++ source code to compute 

derivatives efficiently. By leveraging Clang’s compiler infrastructure, Clad performs source code 

transformations to generate derivative code for given functions, enabling users to compute 

gradients without manually rewriting their implementations. It supports both forward-mode and 

reverse-mode differentiation, making it useful for a range of applications. 

A crucial component for AD in Clad is the tape, a stack-like data structure that stores intermediate 

values for reverse mode AD. This project aims to optimize and generalize the Clad tape to 

improve its efficiency, introduce multilayer storage, enhance thread safety, and enable CPU-GPU 

transfer. 

TAPE 

Reverse-mode AD computes gradients efficiently for scalar outputs with many inputs, and this 

process requires saving intermediate values during the forward pass that will later be used in the 

backward (gradient) pass. The tape is essentially a stack-like data structure designed to record 

and store these intermediate values and the sequence of operations performed on them. This 

enables the exact replay of operations in reverse during gradient computation. The tape follows a 

first-in, last-out (FILO) pattern which aligns naturally with the way reverse-mode AD works—later 

operations in the forward pass are reversed first.  

In Clad’s implementation, the tape is typically realized as a monolithic memory buffer where 

values and metadata are sequentially stored. It is designed to be lightweight and efficient for 

small to moderate computations, but it can become a bottleneck in memory-intensive or parallel 

workloads. Therefore, the tape’s structure and efficiency directly impact the scalability, 

performance, and memory usage of reverse-mode differentiation in Clad. Enhancing the tape to 

support features like thread-safety, checkpointing, multi-level memory hierarchy (RAM/disk), and 

heterogeneous device support (e.g., CPU-GPU transfers) can significantly improve the robustness 

and applicability of Clad in real-world scientific and high-performance computing environments. 



 

 

DELIVERABLES 

1. Optimize the current tape by avoiding re-allocating on resize in favor of using connected 

slabs of array 

2. Enhance existing benchmarks demonstrating the efficiency of the new tape 

3. Add the tape thread safety 

4. Implement multilayer tape being stored in memory and on disk 

5. [Stretch goal] Support cpu-gpu transfer of the tape 

6. [Stretch goal] Add infrastructure to enable checkpointing offload to the new tape 

7. [Stretch goal] Performance benchmarks 

IMPLEMENTATION PLAN 

● Task 1: Optimize the current tape by avoiding re-allocating on resize in favor of using 

connected slabs of array and implement small buffer optimization 

The current implementation of the tape in Clad uses a contiguous dynamic array. Each 

time a new entry is pushed onto the tape and the underlying capacity is exceeded, the 

vector grows by allocating a new larger block of memory, copying all existing entries to 

the new block, and deallocating the old block. 

The current tape implementation dynamically resizes its storage using a growth factor of 

2x when capacity is exceeded. This leads to expensive memory reallocation and copying 

overhead, significantly affecting performance in large-scale differentiation tasks. 

Code for current implementation of function to resize tape: 

 

Instead of reallocating memory, we propose using a slab-based memory allocation 

strategy. This involves allocating connected memory chunks (slabs) and linking them 

dynamically as the tape grows, reducing unnecessary reallocations. 



 

 

Additionally, to further optimize performance for small-scale or short-lived tapes, we 

introduce a small buffer optimization (SBO) as part of the design. With SBO, a small 

statically allocated buffer is embedded directly inside the tape object—usually on the 

stack. Only when this buffer overflows does the system transition to heap-allocated slabs. 

During the transition, the contents of the small buffer are copied into the first slab, and 

subsequent entries are written to the slabs as usual. This optimization significantly 

reduces the memory allocation overhead for small differentiation tasks, allowing them to 

complete faster and with lower memory footprint. 

Example code for proposed structure of tape: 

 

● Task 2: Add Tape Thread Safety 

The current implementation of the tape in Clad is designed for sequential execution, 

assuming that all differentiation and tape operations occur in a single-threaded context. 

As a result, it does not include concurrency primitives such as locks or atomic operations, 

and the tape is not thread-safe. In a sequential execution, operations like pushing values 

onto the tape and popping them during the reverse pass occur in a deterministic order 

without interference, so mutual exclusion is not required. 

However, in multithreaded scenarios, the tape would act as a globally shared resource 

accessed by multiple threads simultaneously. Without synchronization, concurrent reads 

and writes could lead to race conditions, corrupting the tape state or causing incorrect 

gradients. To make the tape thread-safe, we propose integrating a locking mechanism, 

such as a std::mutex. By acquiring a lock before any modification or reading of the tape 

structure, we can ensure mutual exclusion, maintaining the consistency and correctness 

of the tape. This change is essential for enabling parallel reverse-mode AD, particularly 

when checkpointing or executing independent gradient segments across threads. 

● Task 3: Implement Multi-Layer Tape Stored in Memory and Disk 



 

 

Currently, the Clad tape implementation stores all intermediate values entirely in system 

memory and reuses them during the reverse pass to compute gradients. As the number 

of operations grows (for large models or long sequences), so does the size of the tape. 

While memory (RAM) is fast, it's also limited. To scale AD beyond memory limits, we can 

offload older or less frequently accessed portions of the tape to disk, like how operating 

systems page memory. 

This leads to the idea of a multilayer tape where recent entries stay in memory and older 

entries are paged to the disk. The idea is to treat the tape like a hybrid memory buffer 

similar to LRU caching where slabs are evicted to disk when memory exceeds a 

threshold. 

Example code for storing multilayer tape in memory and disk: 

 

● Task 4: Support CPU-GPU Transfer of the Tape 

Currently, the Clad tape operates entirely in host (CPU) memory, with no provisions for 

allocating or accessing data on device (GPU) memory. Once the slab-based tape from 

Task 1 is implemented, where the tape is made up of connected slabs of memory instead 

of relying on frequent reallocations, it becomes significantly easier to manage contiguous 



 

 

memory chunks that are friendly for memory transfer to the GPU. These slabs can be 

treated as blocks of data, allocated using cudaMalloc() and copied between the CPU and 

GPU using standard memory transfer operations like cudaMemcpy(). 

● Task 5: Add Checkpointing Offload to New Tape 

Checkpointing in the context of reverse mode automatic differentiation (AD) refers to the 

strategic storage of intermediate program states during the forward pass, so that during 

the reverse pass, one can recompute parts of the program efficiently without storing all 

intermediate values. It’s a trade-off between memory and computation—reducing memory 

usage by allowing parts of the tape to be discarded and recomputed later if needed.  

To implement this, in the forward pass store only certain intermediate values at the 

checkpoints and during the reverse pass recompute the intermediate values from the 

nearest checkpoint. 

PERFORMANCE ANALYSIS 

As part of the community bonding period, we will use an example application where the tape 

plays a critical role in performance. A suitable candidate is the lulesh-1.0 branch in the Clad fork, 

specifically the lulesh.cu file located in the benchmark/LULESH directory. Toward the end of this 

file, derivative computations are invoked using Clad's automatic differentiation. We will use this 

application as a testbed to benchmark the current tape implementation and compare it with the 

proposed implementation. 

TIMELINE 
 

Community Bonding Period 

May 8 - June 1 Engage with the community.  
Set up the development environment. 

Coding period begins 

Week 1 
 

Modify the structure of the tape to use slabs of arrays and a small buffer instead of 
a contiguous dynamic memory block and make changes in the grow() and 
AllocateRawStorage() functions in the Tape.h file. 
 
Deliverable: Optimize the current tape by avoiding re-allocating on resize in favor 
of using connected slabs of array. 

Week 2 
 

Enhance existing benchmarks to demonstrate the efficiency of the new tape. 

https://github.com/kchristin22/clad/tree/lulesh-1.0


 

 

Week 3 
 

Add locking mechanisms to the modification and reading operations on tape to 
ensure tape thread safety. 
 
Deliverable: Add the tape thread safety. 

Week 4 
 

Add tests for tape thread safety. 

Week 5 
 

Implement LRU algorithm for offloading segments of the tape to disk. 
 
Deliverable: Implement multilayer tape being stored in memory and on disk. 

Week 6 
 

Buffer Week 

Midterm Evaluations 

Week 8 
 

Implement functions to allocate memory on GPU and facilitate transfer of tape 
from CPU to GPU and vice-versa. 
 
Deliverable: Support cpu-gpu transfer of the tape 

Week 9 
 

Implement checkpointing mechanism to recompute values during reverse pass 
into the tape structure and modify the functions in Tape.h file to store only the 
checkpointed values instead of all intermediate values. 
 
Deliverable: Add infrastructure to enable checkpointing offload to the new tape. 

Week 10 
 

Performance benchmarks 

Week 11 
 

Buffer Week 

Week 12 
 

Extended testing, developing documentation, presenting the work. 

BACKGROUND AND MOTIVATION 

Regarding my educational background, I am a third year B’ Tech undergraduate student studying 

Computer Science and Engineering (Artificial Intelligence and Machine Learning) at Manipal 

Institute of Technology. Over the past two years, I’ve been an active member of my university’s 

official AI and robotics team, Project Manas, where I’ve worked on autonomous systems and AI 

projects that exposed me to concepts such as automatic differentiation, parallel programming, 

and optimization. 



 

 

I became particularly interested in automatic differentiation during my exploration of how neural 

networks work internally. This led me to build a neural network from scratch using CUDA C++, 

where I handled both forward and backward passes on the GPU. While working on this, I 

discovered the CLAD repository, and its focus on bringing efficient automatic differentiation to 

C++ immediately resonated with my interests. 

To get involved, I’ve already raised issue #1327 as part of the evaluation process and was 

working on a pull request for issue #1274, which involves fixing an incorrect differentiation result 

involving std::pair. 

Beyond AD, I have prior experience with Clang/LLVM through my work on a compiler project 

based on the Kaleidoscope tutorial. I built a language frontend and developed an understanding 

of how IR generation and code transformation work. 

I found the project “Implement and improve an efficient, layered tape with prefetching 

capabilities” particularly exciting, as it aligns closely with my interests in optimization, 

memory-efficient design, and parallel computing. I believe contributing to this project will help me 

gain a deeper understanding of compiler-assisted program transformation which I can carry 

further into other projects and bring real performance benefits to scientific computing workloads. 

AVAILABILITY 

As for my availability, I have no conflicting academic or professional commitments during the 

summer. I am fully available and can dedicate the required 20–25 hours per week (or more, if 

needed) to the project throughout the duration of GSoC. I am comfortable communicating over 

Email, or Zoom, and I’m happy to adapt to the mentors' preferred communication platform. I will 

remain responsive and will make it a point to regularly share updates and discuss my doubts with 

the mentors. 

 

https://github.com/vgvassilev/clad/issues/1327

	Implement and improve an efficient, layered tape with prefetching capabilities 
	Mentors 
	Personal Details 
	 
	PROJECT DETAILS 
	OVERVIEW 
	TAPE 
	DELIVERABLES 
	IMPLEMENTATION PLAN 
	PERFORMANCE ANALYSIS 

	TIMELINE 
	BACKGROUND AND MOTIVATION 
	AVAILABILITY 

