

Implementing

Debugging Support for

xeus-cpp

for Google Summer of Code 25’

Abhinav Kumar

IIT Indore (2021 - 2025)

Project Mentors:

@anutosh491 @johanmabille @Vipul-Cariappa @aaronj0

—

https://github.com/anutosh491
https://github.com/johanmabille
https://github.com/Vipul-Cariappa
https://github.com/aaronj0

Contents
● Personal Information

1. Points of contact and other relevant links
2. Programming Background
3. Motivation behind participation in GSoC 25’

● Contributions to Compiler Research and LLVM
● Overview of the Project
● Proposed Work
● Proposed Timeline & Milestones
● References and Links

Personal Information

Points of contacts and other relevant links
● Name - Abhinav Kumar
● University - Indian Institute of Technology Indore (IIT Indore)
● Degree - Bachelor of Technology (B. Tech.)
● Major - Computer Science and Engineering
● Residence - Varanasi, Uttar Pradesh, India
● Timezone - Indian Standard Time (UTC + 5:30)
● Typical Working Hours - 6:00-10:00, 19:00-24:00 (IST)
● Github Account - GitHub
● Email -

1. cse210001002@iiti.ac.in (Institute mail)

2. kumar.kr.abhinav@gmail.com (Github linked mail)

3. abhinavdnpiasb@gmail.com (Personal use)

● Language spoken - English

I am Abhinav Kumar, a 4th-year Computer Science & Engineering

undergraduate at IIT Indore, specializing in C++ with a deep passion for

low-level programming, compilers, operating systems, and system

engineering. My journey began with competitive programming, leading me

to backend development and eventually transitioning to systems

programming through cybersecurity and compiler research.

I am an Open Source and Software Development enthusiast and have

contributed to xeus-cpp, CppInterOp, LLVM and others in the past . My

goal is to explore a vast majority of Computer Science fields during my

undergrad degree like Operating Systems, Database Management

Systems and Compiler Design and Architecture.

https://github.com/kr-2003
mailto:cse210001002@iiti.ac.in
mailto:kumar.kr.abhinav@gmail.com
mailto:abhinavdnpiasb@gmail.com

Programming Background

● General Programming Background - I was introduced to C++

back in December of 2021 when I started doing Competitive

Programming at my college. The course really showed me the power

C++ carries and all its advantages. I have been coding in C++ ever

since. I am also highly experienced in building scalable software

applications and DevOps. During my third year, my focus shifted to

cybersecurity which led me into systems programming. In my final

year, I started contributing to LLVM, CppInterOp, and xeus-cpp,

focusing on compiler optimizations, language interoperability, and

Jupyter-based C++ kernels. These contributions reinforced my

expertise in low-level software, compiler design, and tooling,

completing my transition from backend development to systems

programming.

● Git and Github experience - I have been using git for around 3

years now and I am quite familiar with all workflows involved with git

and github . I understood the more tedious and error prone stuff like

rebasing on other branches, hard and soft reset etc through making

a decent number of mistakes on my PR’s while contributing to

LLVM, xeus-cpp and CppInterOp.

● Platform Details - I use macOS Sequoia (15.3.1) as my operating

system along with Visual Studio Code as my primary editor and

debugger whenever I am working on a cpp/python project.

● Internship Experience - I interned twice at Trilogy Innovations

(Codenation) as an SDE Intern, working on:

• CloudfixAI – An LLM-powered cloud cost optimization

assistant with Go, AWS Lambda, and GPT-4o, integrating

GitHub CI/CD to reduce latency to 2-3 seconds.

• Sherlock – A graph-based problem-solving assistant

leveraging AWS Lambda, Amplify, GraphQL, and OpenAI

models. These experiences strengthened my software

engineering, system design, and problem-solving abilities

Motivation behind participating in GSOC 25’
General - GSoC aligns perfectly with my long-term goal of building

robust, high-performance system software, and I am eager to contribute

and grow through this experience. I am to work with experienced mentors

to contribute to impactful open-source projects.

xeus-cpp - I am passionate about compilers, operating systems, and

low-level development, with C++ as my primary tech stack. xeus-cpp

provides the perfect opportunity to contribute to real-world open-source

projects in these areas while refining my expertise in systems

programming, compiler optimizations, and OS internals.

Contributions to Compiler
Research and LLVM

Here are my contributions:

Pull Requests(Merged)

● compiler-research/CppInterOp Added undo command for
CppInterOp

● compiler-research/xeus-cpp Edited docs to state that tests are ON
by default

● compiler-research/xeus-cpp Enabled file magic support for
xeus-cpp-lite

● compiler-research/xeus-cpp Fix Inspect Request Failure in
xeus-cpp-lite

● llvm/llvm-project [libc] Added support for fixed-points in is_signed
and is_unsigned.

● llvm/llvm-project [libc] Enable stdfix functions for macOS arm64
targets.

● llvm/llvm-project [clang][analyzer] Ignore unnamed bitfields in
UninitializedObjectChecker

Pull Requests(In Progress)

● compiler-research/xeus-cpp Added tests for xinspect

https://github.com/compiler-research/CppInterOp/pull/513
https://github.com/compiler-research/CppInterOp/pull/513
https://github.com/compiler-research/xeus-cpp/pull/264
https://github.com/compiler-research/xeus-cpp/pull/264
https://github.com/compiler-research/xeus-cpp/pull/261
https://github.com/compiler-research/xeus-cpp/pull/261
https://github.com/compiler-research/xeus-cpp/pull/258
https://github.com/compiler-research/xeus-cpp/pull/258
https://github.com/llvm/llvm-project/pull/133371
https://github.com/llvm/llvm-project/pull/133371
https://github.com/llvm/llvm-project/pull/132674
https://github.com/llvm/llvm-project/pull/132674
https://github.com/llvm/llvm-project/pull/132427
https://github.com/llvm/llvm-project/pull/132427
https://github.com/compiler-research/xeus-cpp/pull/278

● compiler-research/xeus-cpp Added XEUS_SEARCH_PATH support
in xeus-cpp

Issues Raised

● llvm/llvm-project [libc] Fixed-point types reject negative literals in
constexpr context, unlike unsigned integers

● llvm/llvm-project [libc] std::is_signed_v<T> for any fixed-point always
returns false

● llvm/llvm-project [libc] Ensure compatibility and proper functionality of
stdfix on Darwin-based Apple systems

Overview of the Project

This proposal outlines integrating debugging into the xeus-cpp kernel for

Jupyter using LLDB and its Debug Adapter Protocol (lldb-dap). Modeled

after xeus-python, it leverages LLDB’s Clang and JIT debugging support

to enable breakpoints, variable inspection, and step-through execution.

The modular design ensures compatibility with Jupyter’s frontend,

enhancing interactive C++ development in notebooks.

Proposed Work
In this section , I will be explaining the details of my project . I expect this

structure to be considerably improved under the guidance of my mentors

and fellow contributors.

The Goal

● Enable Interactive Debugging: Provide a seamless debugging

experience for C++ code in xeus-cpp, including breakpoint

management, variable inspection, and stack tracing.

● Leverage Existing Standards: Use the Microsoft Debug Adapter

Protocol (DAP) for compatibility with Jupyter’s frontend, mirroring

xeus-python’s approach.

● Integrate LLDB: Utilize LLDB’s JIT debugging capabilities and Clang

integration to handle xeus-cpp’s dynamic code execution.

https://github.com/compiler-research/xeus-cpp/pull/257
https://github.com/compiler-research/xeus-cpp/pull/257
https://github.com/llvm/llvm-project/issues/133680
https://github.com/llvm/llvm-project/issues/133680
https://github.com/llvm/llvm-project/issues/133365
https://github.com/llvm/llvm-project/issues/133365
https://github.com/llvm/llvm-project/issues/132673
https://github.com/llvm/llvm-project/issues/132673

● Ensure Kernel Stability: Implement debugging via an external

process (lldb-dap) to prevent kernel freezes during breakpoints.

● Minimize Overhead: Design a lightweight integration that reuses

xeus infrastructure (e.g., xeus-zmq) and avoids unnecessary

complexity.

● Future-Proofing: Support extensibility for advanced features like

remote debugging (e.g., WebAssembly) and alternative debuggers

(e.g., GDB).Testing: Implement robust testing framework for testing

debugger using GoogleTest.

Background

● LLDB, part of the LLVM project, is an ideal debugger for xeus-cpp

due to its native support for:

○ JIT-Compiled Code: LLDB can debug machine code

generated by Clang’s JIT, which xeus-cpp relies on (similar to

Clang-Repl). This requires exposing JIT output (e.g., symbol

tables, memory addresses) to LLDB.

○ Clang Integration: LLDB understands Clang’s type system,

ensuring accurate variable inspection and a native debugging

experience.

○ LLVM IR Evaluation: LLDB can inspect LLVM Intermediate

Representation (IR), providing fallback insights if JIT execution

fails.

● Two integration options exist:

○ Attach LLDB: Attach LLDB to the JIT process externally,

requiring minimal changes to xeus-cpp.

○ Embed LLDB APIs: Integrate LLDB’s C++ APIs (e.g.,

lldb::SBDebugger) into xeus-cpp for tighter control, though this

increases complexity.

● The simpler attachment approach, facilitated by lldb-dap, is

recommended for initial implementation.

Lessons from xeus-python

● The xeus-python debugger provides a proven model:

○ DAP-Based: It uses DAP to communicate between the Jupyter

frontend and debugpy, which translates requests into pydevd

API calls.

○ External Process: debugpy runs separately, ensuring the kernel

remains responsive during breakpoints.

○ Minimal Base Class: The xeus::xdebugger_base interface is

lightweight, delegating most logic to the derived class (e.g.,

xpyt::debugger).

● lldb-dap as a Bridge
○ lldb-dap, originally developed for VS Code, implements DAP for

LLDB. It:

○ Acts as a standalone DAP server, translating DAP messages

into LLDB commands.

○ Requires no direct modification of LLDB, simplifying integration.

○ Ensures compatibility with Jupyter’s DAP-based frontend.

● This makes lldb-dap a natural replacement for debugpy in the

xeus-cpp architecture.

Proposed Architecture

The Roadmap

● First, we need to confirm that LLDB can attach to
JIT-compiled code in Clang-Repl. I have already
accomplished and demonstrated this successfully. Here’s
the proof:

○ Video Demo.

○ This program takes user input (C++ code resembling Jupyter

Notebook cell code) and compiles it into an executable

(jitcode_with_cppinterop).

○ The input code is executed using CppInterOp's Cpp::Declare().

○ If plugin.jit-loader.gdb.enable is enabled in LLDB settings,

symbols inside Cpp::Declare() are resolved, allowing debugging

of the user's input code.

○ If the setting is disabled, the debugger skips over that part

without resolving the symbols.

○ A temporary file (input_line_1) is created to store the original

user input code, which serves as the source path.

○ For every code snippet we debug in Jupyter Notebook:

■ We need to compile the jitcode_with_cppinterop

executable having multiple calls to run_code(code)

function.

■ The debugger must run on this executable.

■ The source path should be retrieved using

xcpp::get_cell_temporary_file(code) from xdebugger.hpp.

○ OR

○ We can club all the cells into one file, and pass the code in this

file in the run_code(code) function. Why is this done?? It is

explained in difficulty-2.
○
○ // jitcode_with_cppinterop.cpp
○ #include "clang/Interpreter/CppInterOp.h"
○ #include <iostream>
○
○ void run_code(std::string code) {
○ Cpp::Declare(code.c_str());
○ }
○
○ int main(int argc, char *argv[]) {
○ Cpp::CreateInterpreter({"-g", "-O0"});
○ std::vector<Cpp::TCppScope_t> Decls;
○ std::string code = R"(
○ #include <iostream>

https://drive.google.com/file/d/1l7YN9hfYWLvpS3KnQvSluV8jgjKNiq3q/view?usp=sharing

○ void f2() {
○ int a = 4;
○ int b = 10;
○ std::cout << b - a << std::endl;
○ std::cout << "kr-2003" << std::endl;
○ }
○ void f3() {
○ int a = 1;
○ int b = 10;
○ std::cout << b - a << std::endl;
○ std::cout << "in f3 function" << std::endl;
○ }
○ f2();
○ f3();
○ int a = 100;
○ int b = 1000;
○
○)";
○ std::cout << code << std::endl;
○ return 0;
○ }

● Secondly, we need to use LLDB-DAP to manage
debugging. I have already set up debugging in VSCode
using LLDB-DAP. The following video demo showcases
how JIT-compiled code can be debugged using LLDB,
LLDB-DAP, and VSCode. For our project, we need to
integrate LLDB-DAP with Jupyter Notebook.

○ Video Demo.

○ VSCode's launch.json for debugger.

○ The debugger is attached to the executable that I created

above.
○ {
○ "version": "0.2.0",
○ "configurations": [
○ {
○ "type": "lldb-dap",
○ "request": "launch",
○ "name": "Debug",
○ "program": "/path/to/executable",
○ "args": ["one", "two", "three"],
○ "sourcePath" : ["${workspaceFolder}"],
○ "cwd": "${workspaceFolder}",
○ "initCommands": [
○ "settings set plugin.jit-loader.gdb.enable on"
○]
○ },
○]
○ }

https://drive.google.com/file/d/1Dm2i6StVEkZWhqmvwAt8u_asIAAZU7dM/view?usp=sharing

● LLDB-DAP Executable Running
○ In xeus-python,
○ // call to debugpy.listen

○ code += "debugpy.listen((\'" + m_debugpy_host + "\'," + m_debugpy_port + "))";

■ debugpy runs on a specific port on the localhost.

○ I tried to replicate a similar approach using lldb-dap.

○ I was successfully able to run lldb-dap binary on a specified

port and was able to perform debugging by sending debug

requests which follow the DAP. Video Demo.

○ Created a python script which sends debug requests to

lldb-dap server running on port 9999.

○ init_request = {

○ "seq": 1,

○ "type": "request",

○ "command": "initialize",

○ "arguments": {

○ "clientID": "manual-client",

○ "adapterID": "lldb",

○ "linesStartAt1": True,

○ "columnsStartAt1": True

○ }

○ }

○ send_dap_message(sock, init_request)

○ launch_request = {

○ "seq": 2,

○ "type": "request",

○ "command": "launch",

○ "arguments": {

○ "program": "/Users/abhinavkumar/Desktop/Coding/Testing/test",

○ "args": ["arg1", "arg2"],

○ "cwd": "/Users/abhinavkumar/Desktop/Coding/Testing",

○ "initCommands": [

○ "settings set plugin.jit-loader.gdb.enable on",

○]

○ }

○ }

○ send_dap_message(sock, launch_request)

○ breakpoint_request = {

○ "seq": 3,

○ "type": "request",

○ "command": "setBreakpoints",

○ "arguments": {

○ "source": {

○ "name": "input_line_1",

○ "path": "/Users/abhinavkumar/Desktop/Coding/Testing/input_line_1"

https://drive.google.com/file/d/1hY9t7MNFLCcqWBTuIM0CQQcfSXOcMGlv/view?usp=sharing

○ },

○ "breakpoints": [

○ {

○ "line": 8

○ }

○],

○ "lines": [8],

○ "sourceModified": False,

○ }

○ }

○ send_dap_message(sock, breakpoint_request)

○ # Send configurationDone request

○ config_done_request = {

○ "seq": 4,

○ "type": "request",

○ "command": "configurationDone"

○ }

○ send_dap_message(sock, config_done_request)

○

○ run_request = {

○ "seq": 5,

○ "type": "request",

○ "command": "continue",

○ "arguments": {}

○ }

○ send_dap_message(sock, run_request)

○ I was able to successfully apply breakpoints on specific lines,

hit them and get stack-trace.

○ This experiment was performed on the same executable

mentioned in point-1.

● Implementation of xdebugger.cpp and xdebugger.hpp
● Define debugger Class – Inherit from xeus::xdebugger_base

and declare LLDB-DAP client, configuration, and necessary
functions.

● Implement Constructor & Destructor – Initialize LLDB-DAP
settings and ensure cleanup.

● Start LLDB-DAP (start_lldb_dap) – Launch and configure
LLDB-DAP for debugging. Here, we need to specify the
executable on which the LLDB will run. Here, I propose spinning
the lldb-dap executable on a specific port on the localhost.

● Handle LLDB Versioning – Parse version (parse_lldb_version)
and check feature support (check_version_features).

● Debugger Lifecycle – Implement start() and stop() to manage
debugging sessions.

● Utilities – Provide debugger info (get_debugger_info), manage
temporary source files (get_cell_temporary_file), and create an
instance (make_cpp_debugger).

● (Very Important) xeus-python uses debugger::attach_request()
to attach debugger to current running progress. This works for
python because python-debugger doesn't need any executable
to run. But to make our lldb work, we need to launch instead of
attach. We need to attach lldb to a different process, i.e. our
custom executable which has our JIT-compiled code. Therefore,
instead of attach_request(), we need to make it launch_request().
But, this would require changes in xeus-zmq.

○ if (json_message["command"] == "attach")

○ {

○ handle_init_sequence();

○ m_wait_attach = false;

○ }

○ This is how the "attach" request is handled in
xdap_tcp_client_impl::handle_control_socket().

○ We need to add "launch" request and accordingly change
the handle_init_sequence().

● register_request_handler("attach", std::bind(&debugger::attach_request,

this, _1), true);

○ This is how debugger::attach_request is binded to attach
request in xeus-python's debugger constructor.

○ We need to make our own custom
debugger::launch_request and attach it to the "launch"
request which we already have implemented in xeus-zmq.

● Implementation of lldb-dap client(xlldb_dap_client)
○ Define xllDB_dap_client Class – Inherit from

xeus::xdap_tcp_client and handle LLDB-DAP communication.
○ Implement Constructor – Initialize the client with xeus::xcontext,

xeus::xconfiguration, and DAP settings.
○ Destructor – Use default destructor for automatic cleanup.

○ Handle Debug Events (handle_event) – Process LLDB-DAP
messages and manage debugging state.

○ Retrieve Stack Frames (get_stack_frames) – Fetch stack frames
for a given thread ID and sequence number.

● xeus_cpp_shell
○ Create a new repository xeus_cpp_shell similar to

xeus_python_shell and implement an XDebugger class. This
class will manage variable tracking, debugging, and interaction
with LLDB-DAP in Jupyter. It will filter and process variables,
inspect them dynamically, and provide structured responses. The
implementation will ensure efficient debugging support for C++
code in Jupyter Notebook.

● Testing
○ Creating test_debugger.cpp with debugger_client class.
○ It will mostly resemble the following structure.

○ class debugger_client

○ {

○ public:

○

○ debugger_client(xeus::xcontext& context,

○ const std::string& connection_file,

○ const std::string& log_file);

○

○ bool test_init();

○ bool test_disconnect();

○ bool test_attach();

○ bool test_external_set_breakpoints();

○ bool test_external_next_continue();

○ bool test_set_breakpoints();

○ bool test_set_exception_breakpoints();

○ bool test_source();

○ bool test_next_continue();

○ bool test_step_in();

○ bool test_stack_trace();

○ bool test_debug_info();

○ bool test_inspect_variables();

○ bool test_rich_inspect_variables();

○ bool test_variables();

○ bool test_copy_to_globals();

○ void start();

○ void shutdown();

○ void disconnect_debugger();

○

○ private:

○

○ nl::json attach();

○ nl::json set_external_breakpoints();

○ nl::json set_breakpoints();

○ nl::json set_exception_breakpoints();

○

○ std::string get_external_path();

○ void dump_external_file();

○

○ std::string make_code() const;

○ std::string make_external_code() const;

○ std::string make_external_invoker_code() const;

○

○ bool print_code_variable(const std::string& expected, int& seq);

○ void next(int& seq);

○ void continue_exec(int& seq);

○

○ bool next_continue_common();

○

○ xeus_logger_client m_client;

○ };

Technical Difficulties
Difficulty - 1

● While performing above checks and experiments, I found that if

function definition and function call are in the same cell, then the

step-in call from the function call behaves normally, i.e. it steps-in

directly in one call. But when they are in different cells, then it takes

multiple step-in calls to step into the function definition from the

function call.

● I think this is due to the fact that the execution is going through the

intermediate libraries of CppInterOp/clang-repl. In vs-code, these

intermediate addresses are marked as Unknown Sources.

● When function definition and call are in the same cell
● 1 location added to breakpoint 1

● Process 93415 stopped

● * thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

● frame #0: 0x00000001010841b0 JIT(0x101068000)`__stmts__9 at input_line_1:15:1

● 12 std::cout << b - a << std::endl;

● 13 std::cout << "in f3 function" << std::endl;

● 14 }

● -> 15 f2(); // applying breakpoiutn here

● 16 f3();

● 17 int a = 100;

● 18 int b = 1000;

● (lldb) s

● Process 93415 stopped

● * thread #1, queue = 'com.apple.main-thread', stop reason = step in

● frame #0: 0x000000010108400c JIT(0x101068000)`f2() at input_line_1:4:7

● 1

● 2 #include <iostream>

● 3 void f2() {

● -> 4 int a = 4;

● 5 int b = 10;

● 6 std::cout << b - a << std::endl;

● 7 std::cout << "kr-2003" << std::endl;

● When function definition and call are in different cell
Process 87843 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.8

 frame #0: 0x0000000100594068 JIT(0x100580000)`__stmts__0 at input_line_2:4:1

 1

 2 std::cout << "a = " << a << std::endl;

 3 std::cout << "b = " << b << std::endl;

-> 4 f2();

(lldb) s

Process 87843 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = step in

 frame #0: 0x00000001005940a8

-> 0x1005940a8: adrp x16, 0

 0x1005940ac: ldr x16, [x16, #0xd8]

 0x1005940b0: br x16

 0x1005940b4: adrp x16, 0

(lldb) s

Process 87843 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step into

 frame #0: 0x00000001005940ac

-> 0x1005940ac: ldr x16, [x16, #0xd8]

 0x1005940b0: br x16

 0x1005940b4: adrp x16, 0

 0x1005940b8: ldr x16, [x16, #0xf8]

(lldb) s

Process 87843 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step into

 frame #0: 0x00000001005940b0

-> 0x1005940b0: br x16

 0x1005940b4: adrp x16, 0

 0x1005940b8: ldr x16, [x16, #0xf8]

 0x1005940bc: br x16

(lldb) s

Process 87843 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step into

 frame #0: 0x000000010057c000 JIT(0x100560000)`f2() at input_line_1:3

 1

 2 #include <iostream>

-> 3 void f2() {

 4 int a = 4;

 5 int b = 10;

 6 std::cout << b - a << std::endl;

 7 std::cout << "kr-2003" << std::endl;

● Here, I observed that the intermediate functions do not debug

symbols, i.e. they don't have any function names. That's why the

debugger in vs-code shows them as Unknown Sources.

● I tried following settings in lldb to bypass these functions, but was not

successful.

○ settings set target.process.thread.step-avoid-regexp

○ settings set target.process.thread.step-avoid-libraries

○ settings set target.process.thread.step-in-avoid-nodebug true

Solving Difficulty - 1
I got to the conclusion that I want my debugger to step in/hit breakpoints

only in functions that are in my code. Following are different approaches to

tackle this problem.

● Understanding Just My Code (JMC)
○ My first proposal is to implement the "Just My Code" feature in

LLDB.

○ There is an issue on LLVM regarding this, but this hasn't been

implemented yet.

○ This is a Microsoft Debugger feature announced here:

https://github.com/llvm/llvm-project/issues/61152

https://devblogs.microsoft.com/cppblog/announcing-jmc-stepp

ing-in-visual-studio/.

○ JMC is a debugging feature that helps developers focus on

their own code by automatically skipping over system or library

code during debugging sessions. The feature works by:

○ Inserting calls to a special function

(__CheckForDebuggerJustMyCode) at the start of compiled

functions

○ Using global flags to indicate whether code is "user code" (1) or

"system code" (0)

○ Having the debugger interact with this mechanism to skip

stepping into non-user code
● Running step-in in a loop

○ When a user steps in, then we can run step-in a while loop until it
hits source code.

○ It can be implemented easily with a simple loop of stepIn +
stackTrace messages, until the source field of the stack trace
response is known

○ The only thing to be careful of is the request_seq of the response,
that should be set to the sequence number of the initial stepIn
request.

● Single code file for all cells
○ Packing the code of all cells into one file and then use some kind

of mapping from the current file to a particular cell and its line.

For now, I am inclined towards approach-2 to solve this problem. If I get
some extra time, I would love to explore approach-1.
But, we will see how approach-3 will solve this difficulty and the upcoming
difficulty-2.

Difficulty - 2
Stepping-over(next) on a function call declared in previous
block/cell does not work properly.

● Let's say a user defines multiple functions(f1, f2 and f3) in a single cell.
These functions are called from the same cell one after another. If the
step-over(next) command is used on one function, then it flawlessly
goes to the next function call.

● But let's say a function call is made from another cell, then it takes
multiple step-over(next) commands for the line to execute. Plus, it does
not stop at the next function call. But it does execute it without any

https://devblogs.microsoft.com/cppblog/announcing-jmc-stepping-in-visual-studio/
https://devblogs.microsoft.com/cppblog/announcing-jmc-stepping-in-visual-studio/

bugs/errors.
In the given video,

● input_line_1 shows the use-case explained in point-1. Breakpoint is at
f1() call.

● input_lint_2 shows the use-case explained in point-2. Breakpoint is at
f3() call.

// input_line_1

#include <iostream>
void f1() {
 std::cout << "in f1 function" << std::endl;
}
void f2() {
 std::cout << "in f2 function" << std::endl;
}
void f3() {
 std::cout << "in f3 function" << std::endl;
}
std::cout << "In codeblock 1" << std::endl;
int a = 100;
int b = 1000;
f1();
f2();
f3();

// input_line_2

std::cout << "In codeblock 2" << std::endl;
std::cout << "a = " << a << std::endl;
std::cout << "b = " << b << std::endl;
void f4() {
 std::cout << "in f4 function" << std::endl;
 f2();
}
f3();
f2();

● But, let's say in input_line_2, if instead of using step-over(next), I
continuously use step-in on f3, then it goes to the next function call(i.e.
f2).

● This is shown in this video.
● The problem is how stepping-in inside the last call of f3 directs it to the

call of f2 in input_line_2.

Solving Difficulty - 2

● Now things are getting quite complicated for multiple cells.
● Both step-in and step-over are showing weird behaviour while

debugging.
● I propose to have a single file for all the cells/blocks of code. And we

have an abstract class that handles the mapping of block-line while
debugging. Since, all things are working smoothly and fine for a single

https://github.com/user-attachments/assets/fc59527e-5a56-4a29-a1df-fd3a3a9fa44f
https://github.com/user-attachments/assets/8898b0b0-5295-4368-a601-2e81b621249a

cell, this seems a reasonable and solid approach.

Project Timeline & Milestones

This section provides a basic overview regarding how I plan to utilise the
Pre-GSoC, GSoC contributing and the Post GSoC period .

● Pre-GSoC / Application Review Period

1. I would try to get a better grasp of the codebase , brush up on some
C++, llvm and lldb essentials. I would like to surf through LLVM’s
documentation for the same.

2. Trying different experiments, finding out different difficulties. Also,
continuously think about how these difficulties can be tackled.

3. Keep contributing to xeus-cpp and CppInterOp and get my PRs
merged.

● May 8 - June 1(Community Bonding Period)

1. Regular communication with the mentors will be maintained throughout
this duration to formulate a comprehensive document that outlines the
implementation plan.

2. I would set up a blog post which would then be updated on a weekly
basis.

3. I also intend to begin working on the project ahead of schedule,
potentially during the final week of the community bonding period, to
gain a head start.

● Week 1 - 3

1. Implementing the decided fix for difficulty-1, i.e. need for multiple
step-ins if function call and definition are in different cells.

2. Implementing the decided fix for difficulty-2, i.e. Stepping-over(next) on
a function call declared in the previous block/cell does not work
properly.

● Week 4 - 6
1. Start implementing classes and functions for debugger class. For now,

the whole implementation will not be needed. Just some basic
templates.

2. Start implementing classes and functions for DAP client for LLDB(i.e.
xlldb_dap_client).

● Week 7 - 9
1. Integration of LLDB-DAP client with jupyter debugger frontend.
2. Create a new repository xeus_cpp_shell similar to xeus_python_shell

and implement an XDebugger class. This class will manage variable
tracking, debugging, and interaction with LLDB-DAP in Jupyter.

● Week 10 - 12
1. Implementation of tests for debugger.
2. I would start framing a document for the final GSoC submission and

complete any pending blogs from past weeks.

● Post GSoC Period
1. Complete any unfinished work on Pull Requests associated with the

proposed ideas that may have been delayed due to obstacles
encountered during the process.

2. Create an issue report that provides an overview of the current project
status, including completed tasks, and outlines the roadmap for future
development. This issue will serve as a reference for potential
contributors interested in working on the project.

3. Upon the successful completion of my GSoC project, I would like to
join the Compiler Research team as a full-time contributor.

● Time Commitment

1. I can positively dedicate 30 hours to my project on a weekly basis. On
a need basis I wouldn’t mind scaling the input hours up. I will inform
my mentor in advance if any personal or miscellaneous work causes
me to miss a deadline or weekly meeting. I will also provide a
timeframe during which I will dedicate extra time to complete the work.

2. I plan to finish the Gsoc project with almost a week of buffer . This will
give me more time to address anything left or give more importance to
any issue that demands more time and debugging. or adapt to
unexpected technical challenges that may necessitate slight deviations
from the initial plan. It will also enable me to thoroughly document my
work and rigorously test the newly added features to ensure their
quality and functionality. This extra time will also enable me to
thoroughly document my work and test the newly added features in
their entirety.

I would like to take this opportunity to express my gratitude to those who
have provided me with invaluable support and guidance over the past few
months. In particular, I am deeply thankful to Anutosh (@anutosh491) for his
mentorship—reviewing my PRs, helping me understand the project, and

https://github.com/anutosh491

guiding me through various challenges through our discussions over text and
video calls. I would also like to thank Vipul (@Vipul-Cariappa) for assisting me
with certain issues along the way.

https://github.com/Vipul-Cariappa

	Implementing Debugging Support for xeus-cpp
	Abhinav Kumar

	Contents
	Personal Information
	Points of contacts and other relevant links
	Programming Background
	Motivation behind participating in GSOC 25’

	Contributions to Compiler Research and LLVM
	Overview of the Project
	Proposed Work
	The Goal
	Background
	Lessons from xeus-python
	●lldb-dap as a Bridge

	Proposed Architecture
	The Roadmap
	●First, we need to confirm that LLDB can attach to JIT-compiled code in Clang-Repl. I have already accomplished and demonstrated this successfully. Here’s the proof:
	●Secondly, we need to use LLDB-DAP to manage debugging. I have already set up debugging in VSCode using LLDB-DAP. The following video demo showcases how JIT-compiled code can be debugged using LLDB, LLDB-DAP, and VSCode. For our project, we need to integrate LLDB-DAP with Jupyter Notebook.
	●LLDB-DAP Executable Running
	●Implementation of xdebugger.cpp and xdebugger.hpp
	●Implementation of lldb-dap client(xlldb_dap_client)
	●xeus_cpp_shell
	●Testing
	Technical Difficulties
	Difficulty - 1
	●When function definition and call are in the same cell
	
	●When function definition and call are in different cell
	Solving Difficulty - 1
	●Understanding Just My Code (JMC)
	●Running step-in in a loop
	●Single code file for all cells

	Difficulty - 2
	Stepping-over(next) on a function call declared in previous
	block/cell does not work properly.
	Solving Difficulty - 2

	Project Timeline & Milestones
	●Pre-GSoC / Application Review Period
	●May 8 - June 1(Community Bonding Period)
	●Week 1 - 3
	●Week 4 - 6
	●Week 7 - 9
	●Week 10 - 12
	●Post GSoC Period
	●Time Commitment

