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1. Project Summary 

Introduction 
This project proposes to enhance Clad, a Clang-based automatic differentiation (AD) tool, 
with support for NVIDIA's Thrust library. By enabling differentiation of Thrust's GPU-parallel 
algorithms, Clad users will gain the ability to automatically generate gradients for 
CUDA-accelerated code in scientific computing and machine learning applications. The 
implementation will include extending Clad's source-to-source transformation engine to 
recognize Thrust primitives (e.g., transform, reduce), implement custom derivatives, and 
validate performance through real-world use cases. This work will bridge the gap between 
high-performance GPU computing and AD, potentially accelerating gradient-based 
optimization tasks by orders of magnitude. 
 

 

https://github.com/a-elrawy
mailto:abdelrhman.elrawy1@gmail.com


Key Challenges 
1. Parallelism-Aware Differentiation: Handling data dependencies in parallel 

primitives like thrust::reduce 
2. GPU Memory Management: Propagating adjoints through Thrust's device vectors 

and iterators 
3. Performance Preservation: Ensuring generated derivatives maintain Thrust's 

execution efficiency 
 

 

2. Technical Approach 

Community Bonding Period (May, pre-coding) 

Relationship Building and Environment Setup 
During the three-week Community Bonding period before the official coding begins, I'll focus 
on establishing relationships with mentors and the Clad community. This period will be 
crucial for aligning expectations, understanding team workflows, and planning the project in 
detail. 
 
I'll set up a complete development environment with the LLVM/Clang toolchain, Clad source 
code, Thrust libraries, and appropriate GPU development tools. Working closely with 
mentors, I'll ensure my development environment matches the project standards and allows 
effective testing and contribution. 

Proof-of-Concept Implementation 
A critical goal during the Community Bonding period will be to manually implement and test 
both the forward computations and their corresponding hand-written derivatives for key 
Thrust primitives. Rather than immediately integrating with Clad, I'll first create standalone 
programs that: 

1. Implement forward operations using Thrust functions 
2. Manually code the corresponding gradient functions 
3. Test that these hand-written derivatives produce correct results 

 
An example program for  thrust::transform with a square function can look like: 
 

// Manual forward computation 
thrust::device_vector<float> forward_square(const 

thrust::device_vector<float>& input) { 
    thrust::device_vector<float> output(input.size()); 
    thrust::transform(input.begin(), input.end(), output.begin(), 
                     [](float x) { return x * x; }); 



    return output; 
} 
 
// Hand written derivative function 
void backward_square( 
    const thrust::device_vector<float>& input, 
    const thrust::device_vector<float>& d_output, 
    thrust::device_vector<float>& d_input) { 
     
    // Apply chain rule: d_input = d_output * 2x 
    thrust::transform( 
        d_output.begin(), d_output.end(), 
        input.begin(), d_input.begin(), 
        [](float d_out, float x) { return d_out * 2.0f * x; }); 
} 
 
// Numerical finite difference approximation for verification 
thrust::device_vector<float> finite_diff_square(const 

thrust::device_vector<float>& input, float epsilon = 1e-6) { 
    thrust::device_vector<float> gradients(input.size()); 
    thrust::host_vector<float> h_input = input; 
     
    for (size_t i = 0; i < input.size(); i++) { 
        // Forward difference 
        thrust::host_vector<float> input_plus = h_input; 
        input_plus[i] += epsilon; 
         
        // Convert back to device 
        thrust::device_vector<float> d_input_plus = input_plus; 
         
        // Forward evaluations 
        float val_plus = 

thrust::reduce(forward_square(d_input_plus).begin(),                      

forward_square(d_input_plus).end()); 

 
        float val = thrust::reduce(forward_square(input).begin(),  
                                  forward_square(input).end()); 
         
        // Finite difference approximation 
        gradients[i] = (val_plus - val) / epsilon; 
    } 
     
    return gradients; 
} 
 
// Test function 



void test_square_differentiation() { 
    // Create test data 
    thrust::device_vector<float> input(5, 2.0f); // (all 2.0) 
 
    // Forward pass 
    auto output = forward_square(input); 
     
    // Create artificial gradient (all 1.0) 
    thrust::device_vector<float> d_output(5, 1.0f); 
    thrust::device_vector<float> d_input(5); 
     
    // Backward pass with our manual gradient 
    backward_square(input, d_output, d_input); 
     
    // Compute numerical gradients for comparison 
    auto numerical_grads = finite_diff_square(input); 
     
    // Verify gradients 
    thrust::host_vector<float> h_d_input = d_input; 
    thrust::host_vector<float> h_numerical = numerical_grads; 
     
    std::cout << "Comparing analytical vs numerical gradients:" << 

std::endl; 
    for (int i = 0; i < h_d_input.size(); i++) { 
        std::cout << "  Element " << i << ": analytical = " << 

h_d_input[i]  
                  << ", numerical = " << h_numerical[i] << std::endl; 
         
        // Verify analytical gradient matches numerical approximation 
        assert(fabs(h_d_input[i] - h_numerical[i]) < 1e-4); 
    } 
    std::cout << "Square gradient test passed" << std::endl; 
} 

 
This approach separates understanding mathematics from the Clad integration challenges, 
allowing me to focus on one aspect at a time. The validated manual implementations will 
serve as specifications for the custom derivatives in Clad, making the integration more 
straightforward. 
 

Benchmark Development Plan 
To drive implementation and demonstrate real-world value, I'll research existing open source 
projects that utilize the Thrust API for scientific and machine learning applications. This 
research will focus specifically on how real-world applications implement differentiable 
algorithms using Thrust primitives, helping to identify common patterns and operations that 
should be prioritized for differentiation support. 



 
Based on this research, I'll develop these benchmarks in order of increasing complexity: 
 

1. Vector Norm Computation: Implementing L2 norm calculation using 
transform_reduce to compute the square root of sum of squares. This tests 
differentiation through both reduction and element-wise operations. 
 

2. Logistic Regression Training: A machine learning example using gradient descent 
to optimize weights, with a binary cross-entropy loss function. This demonstrates 
differentiation through a realistic ML training workflow. 

 
3. Neural Network Layer: A dense layer implementation with matrix multiplication and 

activation functions, demonstrating Clad's ability to differentiate through user-defined 
types and complex compositions of Thrust operations. 

 
These benchmarks will serve multiple purposes: 

- Guide implementation priorities based on real-world needs 
- Validate correctness of automatically generated derivatives 
- Measure performance improvements from GPU acceleration 
- Demonstrate the value of Thrust+Clad integration 

 
By focusing on these practical examples throughout development, I'll ensure the 
implementation addresses real-world use cases in machine learning, scientific computing, 
and other computational domains. 
 
 

Research and Analysis (June 1-20, ~80 hours) 

Clad Differentiation Architecture Analysis (30 hours) 
This phase involves a thorough analysis of Clad's existing architecture for handling external 
function calls and CUDA operations. Understanding how Clad currently processes function 
calls in its visitors is essential for extending support to Thrust functions. 
 
The first key aspect to investigate is Clad's call expression handling through the 
VisitCallExpr method in ReverseModeVisitor.cpp. This method determines how 
derivatives are generated for function calls, with patterns for handling special cases: 
 



// From ReverseModeVisitor.cpp 
if (!FD) { 
  // How Clad currently handles unknown functions 
} 
 
if (FD->getNameAsString() == "printf" || FD->getNameAsString() == 

"fprintf") { 
  // Pattern for special function handling 
} 

 
This code illustrates how Clad identifies specific functions for special treatment. We'll need to 
extend this pattern to recognize Thrust API calls such as thrust::transform and 
thrust::reduce. 
 
Next, we'll examine Clad's existing CUDA support to understand the interface between GPU 
operations and derivative computation: 
 

if (shouldUseCudaAtomicOps(base)) { 
  Expr* atomicCall = BuildCallToCudaAtomicAdd(it->second, dfdx()); 
  addToCurrentBlock(atomicCall, direction::reverse); 
} 

 
This snippet shows how Clad handles atomic operations on CUDA devices. Understanding 
this mechanism is crucial because Thrust operations often involve parallel computation on 
GPU, requiring similar synchronization considerations. We'll need to ensure our 
implementation properly handles race conditions during gradient accumulation in parallel 
environments. 

Thrust API Analysis and Prioritization (30 hours) 
In this phase, we'll perform a detailed analysis of the Thrust API to identify which functions 
are most valuable for automatic differentiation in scientific computing and machine learning 
contexts. Thrust provides numerous parallel algorithms grouped into several categories, 
including transformations, reductions, prefix sums, reordering operations, and searching 
algorithms. 
 
Transformations like thrust::transform apply a function to each element of a sequence, 
making them fundamental building blocks for many numerical algorithms. Reductions like 
thrust::reduce combine elements using binary operations, often appearing at the end of 
loss function computations in machine learning models. Prefix sums through operations like 
thrust::inclusive_scan compute cumulative operations and are essential in many 
dynamic programming and parallel algorithms. 
 
Our prioritization will consider differentiability, usage frequency, and implementation 
complexity. Some operations, like sorting, have discontinuities that complicate differentiation, 
while others like element-wise transformations follow clear differentiation patterns. We'll 



focus first on operations commonly used in differentiable algorithms, balancing 
implementation effort with value to users. 

Implementation Strategy Development (20 hours) 
Based on the analysis and the proof-of-concept developed during Community Bonding, this 
phase will refine the implementation strategy for the project. We'll design the architecture for 
Thrust function recognition in Clad's visitors and create a framework for implementing 
custom derivatives for Thrust operations. 
 
Key tasks include: 

- Defining the mechanism for recognizing Thrust function calls 
- Creating a template for implementing custom derivatives for Thrust algorithms 
- Designing the approach for differentiating user-defined functors passed to Thrust 

Building on the lessons from the proof-of-concept, we'll create a consistent approach for 
implementing the derivatives of various Thrust algorithms, ensuring that the implementation 
is both mathematically correct and computationally efficient. 

Example: 
A simpler example to understand automatic differentiation with Thrust is the 
thrust::reduce operation, which is both fundamental and has a straightforward 
derivative calculation. 
 
In the forward pass, thrust::reduce combines all elements in an array using a binary 
operation: 
 

// Sum all elements in a vector 
float total = thrust::reduce(input.begin(), input.end(), 0.0f, 

thrust::plus<float>()); 

 
This is equivalent to: 
 

total = input[0] + input[1] + ... + input[n-1] 

Simple Derivative Rule 
The derivative of a sum with respect to each of its inputs is exactly 1.0. This is a fundamental 
rule in calculus: 
 

∂(x₁ + x₂ + ... + x�)/∂xᵢ = 1 for all i 

 
This means that when we compute the backward pass, we simply need to distribute the 
output gradient equally to all input elements. 



Implementation Example 
For a concrete example, consider computing the gradient of a function that sums all 
elements of a vector: 
 

float sum_all(thrust::device_vector<float>& x) { 
    return thrust::reduce(x.begin(), x.end(), 0.0f, 

thrust::plus<float>()); 
} 

 
When we call clad::gradient(sum_all, input), the derivative implementation needs 
to: 

namespace clad { 
namespace custom_derivatives { 
  template <typename InputIt, typename T> 
  void thrust_reduce_sum_pullback( 
      InputIt input_begin, InputIt input_end, 
      T init, 
      T d_output,  // The gradient flowing back from the output 
      InputIt d_input_begin) {      
    size_t n = std::distance(input_begin, input_end); 
    // For sum reduction, simply copy the output gradient to all inputs 
    thrust::fill(d_input_begin, d_input_begin + n, d_output); 
  } 
} 
} 

 

Core Implementation (June 21-July 31, ~120 hours) 

Thrust Function Recognition in Clad (30 hours) 
This phase focuses on extending Clad to recognize and process Thrust function calls during 
the differentiation process. For Thrust support, we would create a ThrustBuiltins.h 
header that users can include to enable Thrust differentiation. 

 
For example, we'll need to extend the namespace with logic like: 

#ifndef CLAD_DIFFERENTIATOR_THRUSTBUILTINS_H 
#define CLAD_DIFFERENTIATOR_THRUSTBUILTINS_H 
 
#include <thrust/device_vector.h> 
#include <thrust/host_vector.h> 
#include <thrust/transform.h> 
#include <thrust/reduce.h> 
// Other Thrust headers as needed 



 
#include "clad/Differentiator/Differentiator.h" 
 
namespace clad::custom_derivatives { 
namespace thrust { 
  // Custom derivative for thrust::reduce (with sum) 
  template <typename InputIt, typename T> 
  void reduce_pullback( 
      InputIt input_begin, InputIt input_end, 
      T init, T d_output, 
      InputIt d_input_begin) { 
     
    // For sum reduction, gradient flows equally to all inputs 
    size_t n = std::distance(input_begin, input_end); 
    ::thrust::fill(d_input_begin, d_input_begin + n, d_output); 
  } 
  // Additional specialized overloads for other reduction operations 
  // ... 
} 
} 
 
#endif // CLAD_DIFFERENTIATOR_THRUSTBUILTINS_H 

This code illustrates how we'll identify Thrust functions by name and dispatch to specialized 
handlers for each supported function. The actual implementation will include mechanisms for 
template parameter extraction and handling various calling patterns. 

 

Basic Thrust Algorithms Support (50 hours) 
This phase will implement custom derivative handlers for the fundamental Thrust algorithms, 
starting with the most widely used parallel operations. For each operation, we need to: 
 

1. Define the mathematical model of the forward and reverse operations 
2. Create custom derivative implementation in the clad::custom_derivatives 

namespace 
3. Ensure efficient memory management for intermediates and adjoints 
4. Test correctness against finite difference approximations 

 
The implementation of thrust::transform differentiation provides a good example: 

namespace clad { 
namespace custom_derivatives { 

namespace thrust { 
  template <typename InputIt, typename OutputIt, typename UnaryOp> 
  void transform_pullback( 
      InputIt input_begin, InputIt input_end, 
      OutputIt output_begin, UnaryOp op, 



      OutputIt d_output_begin, 
      InputIt d_input_begin) { 
    // Implementation using thrust::transform for the derivative 
    thrust::transform( 
        d_output_begin, d_output_begin + (input_end - input_begin), 
        input_begin, d_input_begin, 
        [op](const auto& d_out, const auto& x) { 
          // Apply chain rule using derivative of the operation 
          auto derivative = derivative_of(op, x);  
          return d_out * derivative; 
        }); 
  } 
}} 

This implementation demonstrates how we apply the chain rule in a parallel context. The 
key insight is that for elementwise operations like transform, the derivative is also 
elementwise, making it natural to express using the same parallel pattern. 

Advanced Thrust Algorithm Support (40 hours) 
After implementing basic operations, this phase will tackle more complex Thrust algorithms 
that require sophisticated differentiation approaches. These include reduction operations 
(thrust::reduce, thrust::transform_reduce), scanning operations 
(thrust::inclusive_scan, thrust::exclusive_scan), and reordering operations 
with continuous approximations where needed. 
 
For example, differentiating thrust::reduce requires understanding that the backward 
pass must distribute the output gradient to all input elements according to the reduction 
operation. For a simple sum reduction: 
 

// Forward pass 
float result = thrust::reduce(input.begin(), input.end()); 
// Backward pass must distribute gradient to all inputs 
thrust::fill(d_input.begin(), d_input.end(), d_output); 

 

For more complex reductions, the gradient distribution depends on the reduction operation. 
This requires careful mathematical analysis and implementation. Other operations like scans 
present unique challenges because the output at each position depends on multiple input 
elements, creating more complex dependency patterns in the derivative computation. 

Testing and Integration (August 1-31, ~80 hours) 

Unit Testing Framework (30 hours) 
A robust testing framework is essential to ensure the correctness and performance of Thrust 
differentiation in Clad. This phase will create correctness verification comparing 



Clad-generated derivatives against finite difference approximations, performance 
benchmarks measuring speedup from GPU-accelerated differentiation, and edge case 
testing ensuring proper handling of corner cases like empty containers. 

 
For example, a test for thrust::transform differentiation might look like: 

TEST(ThrustDerivatives, TransformPullback) { 
  // Setup input data 
  thrust::device_vector<float> input(100, 1.0f); 
   
  // Define function using thrust::transform 
  auto f = [](thrust::device_vector<float>& x) { 
    thrust::device_vector<float> y(x.size()); 
    thrust::transform(x.begin(), x.end(), y.begin(),  
                     [](float val) { return val * val; }); 
    return thrust::reduce(y.begin(), y.end()); 
  }; 
   
  // Compute gradient using Clad 
  auto result = clad::gradient(f, input); 
   
  // For x=1, derivative of x² should be 2x = 2 
  for (size_t i = 0; i < input.size(); ++i) { 
    EXPECT_NEAR(result[i], 2.0f, 1e-5); 
  } 
} 

 

This test illustrates a common pattern: applying a transformation followed by a reduction, 
which is fundamental in many machine learning loss functions. The test verifies that Clad 
correctly applies the chain rule across both operations. We'll develop a comprehensive suite 
of such tests covering all supported Thrust operations and their combinations, ensuring that 
the differentiation is correct across a wide range of use cases. 
 

Real-world Integration Examples (50 hours) 
To demonstrate the practical value of Thrust support in Clad, this phase will develop several 
real-world examples, including neural network training and optimization algorithms. These 
examples will not only serve as validation of the implementation but also as educational 
resources for users. 
 
For each example, we'll explain the mathematical principles of the algorithm, show the 
implementation using Thrust and Clad, and demonstrate performance benefits compared to 
CPU-only or manually-derived approaches. For instance, a simple neural network 
implementation would demonstrate how Thrust operations can be composed to implement 
forward and backward passes through network layers, with Clad automatically generating 
the correct derivatives. 



 
These examples will serve both as validation of our implementation and as documentation 
for users. By showing how Thrust and Clad can be used together in realistic scenarios, we'll 
help users understand how to apply these tools to their own problems. The performance 
comparisons will demonstrate the value proposition of GPU-accelerated automatic 
differentiation, showing how it can accelerate scientific computing and machine learning 
workloads. 

Documentation and Finalization (September 1-30, ~70 hours) 

Comprehensive Documentation (30 hours) 
Clear, comprehensive documentation is essential for adoption of the Thrust support in Clad. 
This phase will create API documentation for all supported Thrust functions, mathematical 
background explaining the differentiation principles, usage examples showing how to 
leverage Thrust+Clad in real applications, and performance guidelines for optimal usage. 

 
For example, the documentation for thrust::transform differentiation would explain: 
"The thrust::transform operation applies a unary function to each element of an input 
range. When differentiated, Clad applies the chain rule by computing the derivative of the 
unary function at each input point and multiplying by the corresponding output gradient. This 
operation efficiently parallelizes on GPU, providing substantial speedup for large datasets. 
 

// Example: Computing gradient of a transform operation 
thrust::device_vector<float> x(1000, 2.0f);  // Initialize with value 

2.0 
// Define a function using thrust::transform 
auto square_sum = [](const thrust::device_vector<float>& input) { 
  thrust::device_vector<float> squared(input.size()); 
  thrust::transform(input.begin(), input.end(), squared.begin(), 
                   [](float x) { return x * x; });  // Square each 

element 
  return thrust::reduce(squared.begin(), squared.end());  // Sum the 

squares 
}; 
 
// Compute gradient using Clad 
auto gradient = clad::gradient(square_sum, x); 
// Result: each element of gradient will be 2*x[i] = 4.0 

 

In this example, Clad automatically computes the derivative of the lambda function using 
chain rule, and the resulting gradient correctly reflects that the derivative of x² is 2x." 
 
We'll create similar documentation for all supported functions, ensuring that users 
understand both the mathematical principles and the practical usage patterns. This 
documentation will be integrated with Clad's existing documentation system. 



Final Integration and Testing (25 hours) 
This phase involves integrating all components into the main Clad codebase and performing 
comprehensive testing. We'll integrate our implementation with Clad's main test suite, 
perform cross-platform testing on various GPU architectures, set up continuous integration 
for ongoing testing, and conduct final performance benchmarking to document speedups. 
 
Integration testing will ensure that the Thrust support works correctly alongside Clad's 
existing functionality, without regressions or conflicts. Cross-platform testing will verify that 
the implementation works correctly across different GPU vendors and compute capabilities. 
The continuous integration setup will ensure that the functionality remains working as Clad 
evolves. 
 
The final performance benchmarking will provide quantitative evidence of the benefits of our 
implementation, showing how GPU-accelerated differentiation can speed up common 
numerical computing workloads. These benchmarks will be included in the documentation to 
help users understand the performance characteristics of the system. 
 

Final Report and Presentation (15 hours) 
The project concludes with comprehensive documentation of the work completed, including 
a technical report detailing the implementation approach and results, presentation materials, 
future work recommendations for further development, and contribution to Clad 
documentation for user guidance. 
 
The technical report will provide a complete account of the work done, the challenges 
encountered, and the solutions developed. It will serve as a reference for future developers 
working on Clad or similar systems. The presentation materials will help communicate the 
value of the work to the broader scientific computing and machine learning communities. 
 
The future work recommendations will identify opportunities for further enhancement of 
Thrust support in Clad, such as supporting additional algorithms, optimizing performance 
further, or integrating with other GPU computing frameworks. These recommendations will 
help guide the ongoing development of Clad. 
 

3. Timeline 

Dates Tasks Hours Deliverables 

June 
1–7 

Analyze ReverseModeVisitor.cpp for 
CUDA/Thrust compatibility 

15h Report on Clad’s gradient 
accumulation patterns 



Dates Tasks Hours Deliverables 

June 
8–14 

Prioritize Thrust functions (e.g., 
transform, reduce) 

15h List of Thrust APIs to 
support 

June 
15–20 

Design API for Thrust differentiation in 
Clad 

20h Draft implementation 
strategy 

June 
21–27 

Extend VisitCallExpr to recognize Thrust 
calls 

15h PR: Thrust function 
detection in Clad’s AST 

June 
28–July 

4 

Implement derivatives for thrust::transform 25h PR: Pushforward/pullback 
for transform with CUDA 

support 

July 
5–11 

Add support for thrust::reduce 25h PR: Gradient rules for 
reductions 

July 
12–18 

Support composite operations 
(transform_reduce, inner_product) 

20h PR: Nested Thrust call 
handling 

July 
19–25 

Optimize memory management for GPU 
gradients 

20h PR: CUDA memory utilities 

July 
26–31 

Validate derivatives for complex Thrust 
pipelines 

15h Test suite for advanced 
Thrust algorithms 

Buffer 1 Aug 1–7 (Catch-up for Phase 2 delays) – – 



Dates Tasks Hours Deliverables 

Aug 
8–14 

Design unit tests for Thrust derivatives 15h Test cases for edge cases 

Aug 
15–21 

Develop ML mini-app (e.g., GPU-based 
gradient descent) 

25h Demo: Differentiated 
optimization workflow 

Aug 
22–31 

Integrate Thrust with Clad’s CI/CD 
pipeline 

20h CI workflow for Thrust tests 

Buffer 2 Sept 1–7 (Catch-up for Phase 3 delays) – – 

Sept 
8–14 

Write API documentation and user guide 15h Docs: Tutorials for 
Thrust+Clad 

Sept 
15–21 

Finalize code integration and edge-case 
tests 

15h PR: Bug fixes and stability 
improvements 

Sept 
22–30 

Prepare final report, submit code/docs, 
present findings 

20h Final submission: Code, 
benchmarks, and 

presentation 

 

4. Final Deliverables 
1. Code Contributions: 

- Thrust function support integrated into Clad. 
2. Testing Infrastructure: 

- 50+ unit tests covering various Thrust algorithms. 



- CI/CD pipeline with GPU nodes. 
3. Documentation: 

- API reference for Thrust support in Clad. 
- User guide with code examples and tutorials. 

4. Performance Benchmarks: 
- Comparative analysis between Clad+Thrust and baseline approaches. 
- Case study on GPU-accelerated gradient-based tasks. 

5. Final Report & Presentation: 
- Detailed technical report highlighting design decisions, challenges, and 

results. 
- Presentation with project highlights and future directions. 

5. Qualifications 
I am a graduate student pursuing a Master’s in Applied Computing, specializing in Machine 
Learning and Parallel Programming. With a strong foundation in software development and 
optimization, I have 1.5 years of experience as a Machine Learning Engineer, where I 
focused on building and refining models for real-world applications. 
 

- Clad Contributions: 
- PR #1237 : Add new custom derivatives for math functions 
- PR #1236 : Update Developer Installation Instruction on README.md. 

- Machine Learning Expertise: 
- 1.5 years of experience as a Machine Learning Engineer, focusing on 

developing and optimizing models for real-world applications. 
- Education: Pursuing a Master’s in Applied Computing (MAC), specializing in 

Machine Learning and Parallel Programming. 
 

- Parallel Programming Experience: 
- Recently completed a parallel programming project implementing Sobel edge 

detection using multiple paradigms (Github Repository).  
- Gained hands-on experience with CUDA GPU programming, including thread 

grid optimization, and shared memory techniques. 
- Implemented and compared MPI, OpenMP, and hybrid approaches. 
- This experience with GPU programming patterns and memory optimization is 

directly applicable to implementing efficient custom derivatives for Thrust 
operations. 

 
- Availability: 

I am fully committed to this project throughout the summer. I can dedicate at least 24 
hours per week consistently from May through September. My summer semester has 
no course load specifically to accommodate this project. 

https://github.com/vgvassilev/clad/pull/1237
https://github.com/vgvassilev/clad/pull/1236
https://github.com/a-elrawy/parallel-edge-detection
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