

Project Title: Support usage of Thrust API in Clad

Project Parameters:
- Duration: June-September (4 months)
- Total Hours: 350 hours (~22 hours/week)
- Focus: Support usage of Thrust API in Clad

Student: Abdelrhman Elrawy
Mentors: Vassil Vassilev, David Lange
Organization: HEP Software Foundation (CompRes/Clad)

Contact Information:
Abdelrhman Elrawy
GitHub: @a-elrawy
E-mail: abdelrhman.elrawy1@gmail.com
Phone number: +1 416 357 8105

1. Project Summary

Introduction
This project proposes to enhance Clad, a Clang-based automatic differentiation (AD) tool,
with support for NVIDIA's Thrust library. By enabling differentiation of Thrust's GPU-parallel
algorithms, Clad users will gain the ability to automatically generate gradients for
CUDA-accelerated code in scientific computing and machine learning applications. The
implementation will include extending Clad's source-to-source transformation engine to
recognize Thrust primitives (e.g., transform, reduce), implement custom derivatives, and
validate performance through real-world use cases. This work will bridge the gap between
high-performance GPU computing and AD, potentially accelerating gradient-based
optimization tasks by orders of magnitude.

https://github.com/a-elrawy
mailto:abdelrhman.elrawy1@gmail.com

Key Challenges
1. Parallelism-Aware Differentiation: Handling data dependencies in parallel

primitives like thrust::reduce
2. GPU Memory Management: Propagating adjoints through Thrust's device vectors

and iterators
3. Performance Preservation: Ensuring generated derivatives maintain Thrust's

execution efficiency

2. Technical Approach

Community Bonding Period (May, pre-coding)

Relationship Building and Environment Setup
During the three-week Community Bonding period before the official coding begins, I'll focus
on establishing relationships with mentors and the Clad community. This period will be
crucial for aligning expectations, understanding team workflows, and planning the project in
detail.

I'll set up a complete development environment with the LLVM/Clang toolchain, Clad source
code, Thrust libraries, and appropriate GPU development tools. Working closely with
mentors, I'll ensure my development environment matches the project standards and allows
effective testing and contribution.

Proof-of-Concept Implementation
A critical goal during the Community Bonding period will be to manually implement and test
both the forward computations and their corresponding hand-written derivatives for key
Thrust primitives. Rather than immediately integrating with Clad, I'll first create standalone
programs that:

1. Implement forward operations using Thrust functions
2. Manually code the corresponding gradient functions
3. Test that these hand-written derivatives produce correct results

An example program for thrust::transform with a square function can look like:

// Manual forward computation
thrust::device_vector<float> forward_square(const

thrust::device_vector<float>& input) {
 thrust::device_vector<float> output(input.size());
 thrust::transform(input.begin(), input.end(), output.begin(),
 [](float x) { return x * x; });

 return output;
}

// Hand written derivative function
void backward_square(
 const thrust::device_vector<float>& input,
 const thrust::device_vector<float>& d_output,
 thrust::device_vector<float>& d_input) {

 // Apply chain rule: d_input = d_output * 2x
 thrust::transform(
 d_output.begin(), d_output.end(),
 input.begin(), d_input.begin(),
 [](float d_out, float x) { return d_out * 2.0f * x; });
}

// Numerical finite difference approximation for verification
thrust::device_vector<float> finite_diff_square(const

thrust::device_vector<float>& input, float epsilon = 1e-6) {
 thrust::device_vector<float> gradients(input.size());
 thrust::host_vector<float> h_input = input;

 for (size_t i = 0; i < input.size(); i++) {
 // Forward difference
 thrust::host_vector<float> input_plus = h_input;
 input_plus[i] += epsilon;

 // Convert back to device
 thrust::device_vector<float> d_input_plus = input_plus;

 // Forward evaluations
 float val_plus =

thrust::reduce(forward_square(d_input_plus).begin(),

forward_square(d_input_plus).end());

 float val = thrust::reduce(forward_square(input).begin(),
 forward_square(input).end());

 // Finite difference approximation
 gradients[i] = (val_plus - val) / epsilon;
 }

 return gradients;
}

// Test function

void test_square_differentiation() {
 // Create test data
 thrust::device_vector<float> input(5, 2.0f); // (all 2.0)

 // Forward pass
 auto output = forward_square(input);

 // Create artificial gradient (all 1.0)
 thrust::device_vector<float> d_output(5, 1.0f);
 thrust::device_vector<float> d_input(5);

 // Backward pass with our manual gradient
 backward_square(input, d_output, d_input);

 // Compute numerical gradients for comparison
 auto numerical_grads = finite_diff_square(input);

 // Verify gradients
 thrust::host_vector<float> h_d_input = d_input;
 thrust::host_vector<float> h_numerical = numerical_grads;

 std::cout << "Comparing analytical vs numerical gradients:" <<

std::endl;
 for (int i = 0; i < h_d_input.size(); i++) {
 std::cout << " Element " << i << ": analytical = " <<

h_d_input[i]
 << ", numerical = " << h_numerical[i] << std::endl;

 // Verify analytical gradient matches numerical approximation
 assert(fabs(h_d_input[i] - h_numerical[i]) < 1e-4);
 }
 std::cout << "Square gradient test passed" << std::endl;
}

This approach separates understanding mathematics from the Clad integration challenges,
allowing me to focus on one aspect at a time. The validated manual implementations will
serve as specifications for the custom derivatives in Clad, making the integration more
straightforward.

Benchmark Development Plan
To drive implementation and demonstrate real-world value, I'll research existing open source
projects that utilize the Thrust API for scientific and machine learning applications. This
research will focus specifically on how real-world applications implement differentiable
algorithms using Thrust primitives, helping to identify common patterns and operations that
should be prioritized for differentiation support.

Based on this research, I'll develop these benchmarks in order of increasing complexity:

1. Vector Norm Computation: Implementing L2 norm calculation using
transform_reduce to compute the square root of sum of squares. This tests
differentiation through both reduction and element-wise operations.

2. Logistic Regression Training: A machine learning example using gradient descent
to optimize weights, with a binary cross-entropy loss function. This demonstrates
differentiation through a realistic ML training workflow.

3. Neural Network Layer: A dense layer implementation with matrix multiplication and

activation functions, demonstrating Clad's ability to differentiate through user-defined
types and complex compositions of Thrust operations.

These benchmarks will serve multiple purposes:

- Guide implementation priorities based on real-world needs
- Validate correctness of automatically generated derivatives
- Measure performance improvements from GPU acceleration
- Demonstrate the value of Thrust+Clad integration

By focusing on these practical examples throughout development, I'll ensure the
implementation addresses real-world use cases in machine learning, scientific computing,
and other computational domains.

Research and Analysis (June 1-20, ~80 hours)

Clad Differentiation Architecture Analysis (30 hours)
This phase involves a thorough analysis of Clad's existing architecture for handling external
function calls and CUDA operations. Understanding how Clad currently processes function
calls in its visitors is essential for extending support to Thrust functions.

The first key aspect to investigate is Clad's call expression handling through the
VisitCallExpr method in ReverseModeVisitor.cpp. This method determines how
derivatives are generated for function calls, with patterns for handling special cases:

// From ReverseModeVisitor.cpp
if (!FD) {
 // How Clad currently handles unknown functions
}

if (FD->getNameAsString() == "printf" || FD->getNameAsString() ==

"fprintf") {
 // Pattern for special function handling
}

This code illustrates how Clad identifies specific functions for special treatment. We'll need to
extend this pattern to recognize Thrust API calls such as thrust::transform and
thrust::reduce.

Next, we'll examine Clad's existing CUDA support to understand the interface between GPU
operations and derivative computation:

if (shouldUseCudaAtomicOps(base)) {
 Expr* atomicCall = BuildCallToCudaAtomicAdd(it->second, dfdx());
 addToCurrentBlock(atomicCall, direction::reverse);
}

This snippet shows how Clad handles atomic operations on CUDA devices. Understanding
this mechanism is crucial because Thrust operations often involve parallel computation on
GPU, requiring similar synchronization considerations. We'll need to ensure our
implementation properly handles race conditions during gradient accumulation in parallel
environments.

Thrust API Analysis and Prioritization (30 hours)
In this phase, we'll perform a detailed analysis of the Thrust API to identify which functions
are most valuable for automatic differentiation in scientific computing and machine learning
contexts. Thrust provides numerous parallel algorithms grouped into several categories,
including transformations, reductions, prefix sums, reordering operations, and searching
algorithms.

Transformations like thrust::transform apply a function to each element of a sequence,
making them fundamental building blocks for many numerical algorithms. Reductions like
thrust::reduce combine elements using binary operations, often appearing at the end of
loss function computations in machine learning models. Prefix sums through operations like
thrust::inclusive_scan compute cumulative operations and are essential in many
dynamic programming and parallel algorithms.

Our prioritization will consider differentiability, usage frequency, and implementation
complexity. Some operations, like sorting, have discontinuities that complicate differentiation,
while others like element-wise transformations follow clear differentiation patterns. We'll

focus first on operations commonly used in differentiable algorithms, balancing
implementation effort with value to users.

Implementation Strategy Development (20 hours)
Based on the analysis and the proof-of-concept developed during Community Bonding, this
phase will refine the implementation strategy for the project. We'll design the architecture for
Thrust function recognition in Clad's visitors and create a framework for implementing
custom derivatives for Thrust operations.

Key tasks include:

- Defining the mechanism for recognizing Thrust function calls
- Creating a template for implementing custom derivatives for Thrust algorithms
- Designing the approach for differentiating user-defined functors passed to Thrust

Building on the lessons from the proof-of-concept, we'll create a consistent approach for
implementing the derivatives of various Thrust algorithms, ensuring that the implementation
is both mathematically correct and computationally efficient.

Example:
A simpler example to understand automatic differentiation with Thrust is the
thrust::reduce operation, which is both fundamental and has a straightforward
derivative calculation.

In the forward pass, thrust::reduce combines all elements in an array using a binary
operation:

// Sum all elements in a vector
float total = thrust::reduce(input.begin(), input.end(), 0.0f,

thrust::plus<float>());

This is equivalent to:

total = input[0] + input[1] + ... + input[n-1]

Simple Derivative Rule
The derivative of a sum with respect to each of its inputs is exactly 1.0. This is a fundamental
rule in calculus:

∂(x₁ + x₂ + ... + x�)/∂xᵢ = 1 for all i

This means that when we compute the backward pass, we simply need to distribute the
output gradient equally to all input elements.

Implementation Example
For a concrete example, consider computing the gradient of a function that sums all
elements of a vector:

float sum_all(thrust::device_vector<float>& x) {
 return thrust::reduce(x.begin(), x.end(), 0.0f,

thrust::plus<float>());
}

When we call clad::gradient(sum_all, input), the derivative implementation needs
to:

namespace clad {
namespace custom_derivatives {
 template <typename InputIt, typename T>
 void thrust_reduce_sum_pullback(
 InputIt input_begin, InputIt input_end,
 T init,
 T d_output, // The gradient flowing back from the output
 InputIt d_input_begin) {
 size_t n = std::distance(input_begin, input_end);
 // For sum reduction, simply copy the output gradient to all inputs
 thrust::fill(d_input_begin, d_input_begin + n, d_output);
 }
}
}

Core Implementation (June 21-July 31, ~120 hours)

Thrust Function Recognition in Clad (30 hours)
This phase focuses on extending Clad to recognize and process Thrust function calls during
the differentiation process. For Thrust support, we would create a ThrustBuiltins.h
header that users can include to enable Thrust differentiation.

For example, we'll need to extend the namespace with logic like:

#ifndef CLAD_DIFFERENTIATOR_THRUSTBUILTINS_H
#define CLAD_DIFFERENTIATOR_THRUSTBUILTINS_H

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/transform.h>
#include <thrust/reduce.h>
// Other Thrust headers as needed

#include "clad/Differentiator/Differentiator.h"

namespace clad::custom_derivatives {
namespace thrust {
 // Custom derivative for thrust::reduce (with sum)
 template <typename InputIt, typename T>
 void reduce_pullback(
 InputIt input_begin, InputIt input_end,
 T init, T d_output,
 InputIt d_input_begin) {

 // For sum reduction, gradient flows equally to all inputs
 size_t n = std::distance(input_begin, input_end);
 ::thrust::fill(d_input_begin, d_input_begin + n, d_output);
 }
 // Additional specialized overloads for other reduction operations
 // ...
}
}

#endif // CLAD_DIFFERENTIATOR_THRUSTBUILTINS_H

This code illustrates how we'll identify Thrust functions by name and dispatch to specialized
handlers for each supported function. The actual implementation will include mechanisms for
template parameter extraction and handling various calling patterns.

Basic Thrust Algorithms Support (50 hours)
This phase will implement custom derivative handlers for the fundamental Thrust algorithms,
starting with the most widely used parallel operations. For each operation, we need to:

1. Define the mathematical model of the forward and reverse operations
2. Create custom derivative implementation in the clad::custom_derivatives

namespace
3. Ensure efficient memory management for intermediates and adjoints
4. Test correctness against finite difference approximations

The implementation of thrust::transform differentiation provides a good example:

namespace clad {
namespace custom_derivatives {

namespace thrust {
 template <typename InputIt, typename OutputIt, typename UnaryOp>
 void transform_pullback(
 InputIt input_begin, InputIt input_end,
 OutputIt output_begin, UnaryOp op,

 OutputIt d_output_begin,
 InputIt d_input_begin) {
 // Implementation using thrust::transform for the derivative
 thrust::transform(
 d_output_begin, d_output_begin + (input_end - input_begin),
 input_begin, d_input_begin,
 [op](const auto& d_out, const auto& x) {
 // Apply chain rule using derivative of the operation
 auto derivative = derivative_of(op, x);
 return d_out * derivative;
 });
 }
}}

This implementation demonstrates how we apply the chain rule in a parallel context. The
key insight is that for elementwise operations like transform, the derivative is also
elementwise, making it natural to express using the same parallel pattern.

Advanced Thrust Algorithm Support (40 hours)
After implementing basic operations, this phase will tackle more complex Thrust algorithms
that require sophisticated differentiation approaches. These include reduction operations
(thrust::reduce, thrust::transform_reduce), scanning operations
(thrust::inclusive_scan, thrust::exclusive_scan), and reordering operations
with continuous approximations where needed.

For example, differentiating thrust::reduce requires understanding that the backward
pass must distribute the output gradient to all input elements according to the reduction
operation. For a simple sum reduction:

// Forward pass
float result = thrust::reduce(input.begin(), input.end());
// Backward pass must distribute gradient to all inputs
thrust::fill(d_input.begin(), d_input.end(), d_output);

For more complex reductions, the gradient distribution depends on the reduction operation.
This requires careful mathematical analysis and implementation. Other operations like scans
present unique challenges because the output at each position depends on multiple input
elements, creating more complex dependency patterns in the derivative computation.

Testing and Integration (August 1-31, ~80 hours)

Unit Testing Framework (30 hours)
A robust testing framework is essential to ensure the correctness and performance of Thrust
differentiation in Clad. This phase will create correctness verification comparing

Clad-generated derivatives against finite difference approximations, performance
benchmarks measuring speedup from GPU-accelerated differentiation, and edge case
testing ensuring proper handling of corner cases like empty containers.

For example, a test for thrust::transform differentiation might look like:

TEST(ThrustDerivatives, TransformPullback) {
 // Setup input data
 thrust::device_vector<float> input(100, 1.0f);

 // Define function using thrust::transform
 auto f = [](thrust::device_vector<float>& x) {
 thrust::device_vector<float> y(x.size());
 thrust::transform(x.begin(), x.end(), y.begin(),
 [](float val) { return val * val; });
 return thrust::reduce(y.begin(), y.end());
 };

 // Compute gradient using Clad
 auto result = clad::gradient(f, input);

 // For x=1, derivative of x² should be 2x = 2
 for (size_t i = 0; i < input.size(); ++i) {
 EXPECT_NEAR(result[i], 2.0f, 1e-5);
 }
}

This test illustrates a common pattern: applying a transformation followed by a reduction,
which is fundamental in many machine learning loss functions. The test verifies that Clad
correctly applies the chain rule across both operations. We'll develop a comprehensive suite
of such tests covering all supported Thrust operations and their combinations, ensuring that
the differentiation is correct across a wide range of use cases.

Real-world Integration Examples (50 hours)
To demonstrate the practical value of Thrust support in Clad, this phase will develop several
real-world examples, including neural network training and optimization algorithms. These
examples will not only serve as validation of the implementation but also as educational
resources for users.

For each example, we'll explain the mathematical principles of the algorithm, show the
implementation using Thrust and Clad, and demonstrate performance benefits compared to
CPU-only or manually-derived approaches. For instance, a simple neural network
implementation would demonstrate how Thrust operations can be composed to implement
forward and backward passes through network layers, with Clad automatically generating
the correct derivatives.

These examples will serve both as validation of our implementation and as documentation
for users. By showing how Thrust and Clad can be used together in realistic scenarios, we'll
help users understand how to apply these tools to their own problems. The performance
comparisons will demonstrate the value proposition of GPU-accelerated automatic
differentiation, showing how it can accelerate scientific computing and machine learning
workloads.

Documentation and Finalization (September 1-30, ~70 hours)

Comprehensive Documentation (30 hours)
Clear, comprehensive documentation is essential for adoption of the Thrust support in Clad.
This phase will create API documentation for all supported Thrust functions, mathematical
background explaining the differentiation principles, usage examples showing how to
leverage Thrust+Clad in real applications, and performance guidelines for optimal usage.

For example, the documentation for thrust::transform differentiation would explain:
"The thrust::transform operation applies a unary function to each element of an input
range. When differentiated, Clad applies the chain rule by computing the derivative of the
unary function at each input point and multiplying by the corresponding output gradient. This
operation efficiently parallelizes on GPU, providing substantial speedup for large datasets.

// Example: Computing gradient of a transform operation
thrust::device_vector<float> x(1000, 2.0f); // Initialize with value

2.0
// Define a function using thrust::transform
auto square_sum = [](const thrust::device_vector<float>& input) {
 thrust::device_vector<float> squared(input.size());
 thrust::transform(input.begin(), input.end(), squared.begin(),
 [](float x) { return x * x; }); // Square each

element
 return thrust::reduce(squared.begin(), squared.end()); // Sum the

squares
};

// Compute gradient using Clad
auto gradient = clad::gradient(square_sum, x);
// Result: each element of gradient will be 2*x[i] = 4.0

In this example, Clad automatically computes the derivative of the lambda function using
chain rule, and the resulting gradient correctly reflects that the derivative of x² is 2x."

We'll create similar documentation for all supported functions, ensuring that users
understand both the mathematical principles and the practical usage patterns. This
documentation will be integrated with Clad's existing documentation system.

Final Integration and Testing (25 hours)
This phase involves integrating all components into the main Clad codebase and performing
comprehensive testing. We'll integrate our implementation with Clad's main test suite,
perform cross-platform testing on various GPU architectures, set up continuous integration
for ongoing testing, and conduct final performance benchmarking to document speedups.

Integration testing will ensure that the Thrust support works correctly alongside Clad's
existing functionality, without regressions or conflicts. Cross-platform testing will verify that
the implementation works correctly across different GPU vendors and compute capabilities.
The continuous integration setup will ensure that the functionality remains working as Clad
evolves.

The final performance benchmarking will provide quantitative evidence of the benefits of our
implementation, showing how GPU-accelerated differentiation can speed up common
numerical computing workloads. These benchmarks will be included in the documentation to
help users understand the performance characteristics of the system.

Final Report and Presentation (15 hours)
The project concludes with comprehensive documentation of the work completed, including
a technical report detailing the implementation approach and results, presentation materials,
future work recommendations for further development, and contribution to Clad
documentation for user guidance.

The technical report will provide a complete account of the work done, the challenges
encountered, and the solutions developed. It will serve as a reference for future developers
working on Clad or similar systems. The presentation materials will help communicate the
value of the work to the broader scientific computing and machine learning communities.

The future work recommendations will identify opportunities for further enhancement of
Thrust support in Clad, such as supporting additional algorithms, optimizing performance
further, or integrating with other GPU computing frameworks. These recommendations will
help guide the ongoing development of Clad.

3. Timeline

Dates Tasks Hours Deliverables

June
1–7

Analyze ReverseModeVisitor.cpp for
CUDA/Thrust compatibility

15h Report on Clad’s gradient
accumulation patterns

Dates Tasks Hours Deliverables

June
8–14

Prioritize Thrust functions (e.g.,
transform, reduce)

15h List of Thrust APIs to
support

June
15–20

Design API for Thrust differentiation in
Clad

20h Draft implementation
strategy

June
21–27

Extend VisitCallExpr to recognize Thrust
calls

15h PR: Thrust function
detection in Clad’s AST

June
28–July

4

Implement derivatives for thrust::transform 25h PR: Pushforward/pullback
for transform with CUDA

support

July
5–11

Add support for thrust::reduce 25h PR: Gradient rules for
reductions

July
12–18

Support composite operations
(transform_reduce, inner_product)

20h PR: Nested Thrust call
handling

July
19–25

Optimize memory management for GPU
gradients

20h PR: CUDA memory utilities

July
26–31

Validate derivatives for complex Thrust
pipelines

15h Test suite for advanced
Thrust algorithms

Buffer 1 Aug 1–7 (Catch-up for Phase 2 delays) – –

Dates Tasks Hours Deliverables

Aug
8–14

Design unit tests for Thrust derivatives 15h Test cases for edge cases

Aug
15–21

Develop ML mini-app (e.g., GPU-based
gradient descent)

25h Demo: Differentiated
optimization workflow

Aug
22–31

Integrate Thrust with Clad’s CI/CD
pipeline

20h CI workflow for Thrust tests

Buffer 2 Sept 1–7 (Catch-up for Phase 3 delays) – –

Sept
8–14

Write API documentation and user guide 15h Docs: Tutorials for
Thrust+Clad

Sept
15–21

Finalize code integration and edge-case
tests

15h PR: Bug fixes and stability
improvements

Sept
22–30

Prepare final report, submit code/docs,
present findings

20h Final submission: Code,
benchmarks, and

presentation

4. Final Deliverables
1. Code Contributions:

- Thrust function support integrated into Clad.
2. Testing Infrastructure:

- 50+ unit tests covering various Thrust algorithms.

- CI/CD pipeline with GPU nodes.
3. Documentation:

- API reference for Thrust support in Clad.
- User guide with code examples and tutorials.

4. Performance Benchmarks:
- Comparative analysis between Clad+Thrust and baseline approaches.
- Case study on GPU-accelerated gradient-based tasks.

5. Final Report & Presentation:
- Detailed technical report highlighting design decisions, challenges, and

results.
- Presentation with project highlights and future directions.

5. Qualifications
I am a graduate student pursuing a Master’s in Applied Computing, specializing in Machine
Learning and Parallel Programming. With a strong foundation in software development and
optimization, I have 1.5 years of experience as a Machine Learning Engineer, where I
focused on building and refining models for real-world applications.

- Clad Contributions:
- PR #1237 : Add new custom derivatives for math functions
- PR #1236 : Update Developer Installation Instruction on README.md.

- Machine Learning Expertise:
- 1.5 years of experience as a Machine Learning Engineer, focusing on

developing and optimizing models for real-world applications.
- Education: Pursuing a Master’s in Applied Computing (MAC), specializing in

Machine Learning and Parallel Programming.

- Parallel Programming Experience:
- Recently completed a parallel programming project implementing Sobel edge

detection using multiple paradigms (Github Repository).
- Gained hands-on experience with CUDA GPU programming, including thread

grid optimization, and shared memory techniques.
- Implemented and compared MPI, OpenMP, and hybrid approaches.
- This experience with GPU programming patterns and memory optimization is

directly applicable to implementing efficient custom derivatives for Thrust
operations.

- Availability:

I am fully committed to this project throughout the summer. I can dedicate at least 24
hours per week consistently from May through September. My summer semester has
no course load specifically to accommodate this project.

https://github.com/vgvassilev/clad/pull/1237
https://github.com/vgvassilev/clad/pull/1236
https://github.com/a-elrawy/parallel-edge-detection

	Project Parameters:
	Contact Information:

	1. Project Summary
	Introduction
	Key Challenges

	2. Technical Approach
	Community Bonding Period (May, pre-coding)
	Relationship Building and Environment Setup
	Proof-of-Concept Implementation
	Benchmark Development Plan

	Research and Analysis (June 1-20, ~80 hours)
	Clad Differentiation Architecture Analysis (30 hours)
	Thrust API Analysis and Prioritization (30 hours)
	Implementation Strategy Development (20 hours)
	Example:
	Simple Derivative Rule
	Implementation Example

	Core Implementation (June 21-July 31, ~120 hours)
	Thrust Function Recognition in Clad (30 hours)
	Basic Thrust Algorithms Support (50 hours)
	Advanced Thrust Algorithm Support (40 hours)

	Testing and Integration (August 1-31, ~80 hours)
	Unit Testing Framework (30 hours)
	Real-world Integration Examples (50 hours)

	Documentation and Finalization (September 1-30, ~70 hours)
	Comprehensive Documentation (30 hours)
	Final Integration and Testing (25 hours)
	Final Report and Presentation (15 hours)

	3. Timeline
	Dates
	Tasks
	Hours
	Deliverables
	June 1–7
	Analyze ReverseModeVisitor.cpp for CUDA/Thrust compatibility
	15h
	Report on Clad’s gradient accumulation patterns
	June 8–14
	Prioritize Thrust functions (e.g., transform, reduce)
	15h
	List of Thrust APIs to support
	June 15–20
	Design API for Thrust differentiation in Clad
	20h
	Draft implementation strategy
	June 21–27
	Extend VisitCallExpr to recognize Thrust calls
	15h
	PR: Thrust function detection in Clad’s AST
	June 28–July 4
	Implement derivatives for thrust::transform
	25h
	PR: Pushforward/pullback for transform with CUDA support
	July 5–11
	Add support for thrust::reduce
	25h
	PR: Gradient rules for reductions
	July 12–18
	Support composite operations (transform_reduce, inner_product)
	20h
	PR: Nested Thrust call handling
	July 19–25
	Optimize memory management for GPU gradients
	20h
	PR: CUDA memory utilities
	July 26–31
	Validate derivatives for complex Thrust pipelines
	15h
	Test suite for advanced Thrust algorithms
	Buffer 1
	Aug 1–7 (Catch-up for Phase 2 delays)
	–
	–
	Aug 8–14
	Design unit tests for Thrust derivatives
	15h
	Test cases for edge cases
	Aug 15–21
	Develop ML mini-app (e.g., GPU-based gradient descent)
	25h
	Demo: Differentiated optimization workflow
	Aug 22–31
	Integrate Thrust with Clad’s CI/CD pipeline
	20h
	CI workflow for Thrust tests
	Buffer 2
	Sept 1–7 (Catch-up for Phase 3 delays)
	–
	–
	Sept 8–14
	Write API documentation and user guide
	15h
	Docs: Tutorials for Thrust+Clad
	Sept 15–21
	Finalize code integration and edge-case tests
	15h
	PR: Bug fixes and stability improvements
	Sept 22–30
	Prepare final report, submit code/docs, present findings
	20h
	Final submission: Code, benchmarks, and presentation
	
	4. Final Deliverables

	5. Qualifications

