
Written by Aaron
on September 25, 2023

Google Summer of Code
2023 @CERN-HSF

This is a blog post entailing the cumulative work I achieved during my 4 months as a GSoC
student under the CERN-HSF organization.

Here is a link to the project proposal :

Extending the Cppyy support in Numba

Presentations at the Compiler Research Group:

May 17, 2023

Aug 16, 2023

Experience
Participating in Google Summer of Code has been incredibly rewarding for me. I had the
opportunity to immerse myself in the advanced computing environment at CERN and interact
with technologies in the ROOT ecosystem like Cling. My project, “Extending the Cppyy support
in Numba”, allowed me to delve deep into the architecture of Cppyy, enabling me to understand
its structure and significance. This experience has enriched my knowledge base and elevated my
problem-solving and coding abilities, helping me see the broader implications of software
development tools and their applications in real-world scenarios. Working on a mixed C++ and
Python codebase on a daily basis subconsciously elevated my problem-solving skills in other
aspects of my life, like university or other coding challenges

My experience was quite fantastic, and I am glad that I could succesfully contribute to the
amazing work in high performance and interactive computing being done at CERN. My favourite
part of Google Summer of Code was the exposure to software development on the highest level,
specifically in compiler research. I believe CERN-HSF has given me a platform to systematically
explore and work in high-performance computing. This also includes the wonderful
conversations I had with my mentors and other group members that definitely contributed to
improving my knowledge and ideas. I am very grateful for the footing I have obtained in
performing open-source contributions in a streamlined fashion.

Extending the Cppyy support in Numba

BlogPost - Aaron Jomy Posts Tags About

https://drive.google.com/file/d/1w1gwXV7rW9T9Sqsgf5TRM4p1QyHXJGw9/view?usp=sharing
https://compiler-research.org/assets/presentations/CaaS_Weekly_17_05_2023_Aaron-Extending_the_Cppyy_Support_in_Numba.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_16_08_2023_Aaron-Extending_the_Cppyy_Support_in_Numba_Progress_Update.pdf
https://maximusron.github.io/
https://maximusron.github.io/
https://maximusron.github.io/
https://maximusron.github.io/
https://maximusron.github.io/tags
https://maximusron.github.io/about

Cppyy : An automatic, run-time, Python-C++ bindings generator
Cling : is used in backend since an interactive C++ interpreter
provides a runtime exec approach to C++ code
Numba : A JIT compiler that translates Python and NumPy code
into fast machine code

Why use Numba?

The compute time overhead while switching between languages accumulates in loops with cppyy
objects.

Numba optimizes the loop and compiles it into machine code which crosses the language barrier
only once

Challenges

Typing is one of the largest problems posed: Template function utilization, reference types and
correct function matching depend on the type resolution system

Type Inference solution: A mechanism to handle implicit casting based on propagated type info
and the cppyy reflection layer.

Note: Typing does not backtrack since the numba extension will only ever obtain the numba type
inference result.

Python Numba Type LLVM Type used in Numba lowering

3 (int) int64 i64

3.14 (float) float64 double

(1, 2, 3) UniTuple(int64, 3) [3 x i64]

(1, 2.5) Tuple(int64, float64) {i64, double}

np.array([1, 2], dtype=np.int32) array(int64, 1d, C) {i8, i8, i64, i64, i32*, [1 x i64]}

“Hello” unicode_type {i8, i64, i32, i32, i64, i8, i8*}

This is an important step to addressing the challenges on the avenues of adding efficient reference
type detection and handling, as well as extending the capabilities of the current template
functions supported.

Primary Deliverables:

Add general support for C++ templates in Numba through Cppyy

Add support for C++ reference types in Numba through Cppyy

Numba pipeline

Typing : Numba core has a type inference algorithm which assigns a nb_type for a variable

Lowering : Numba lowers high-level Python operations into low-level LLVM code.Exploits
typing to map to LLVM type

Boxing and unboxing : convert PyObject* ‘s into native values, and vice-versa.

We utilise the runtime numba compilation process to lower C++ code cppdef’ed in Python. How?

Numba Low Level Extension API in Cppyy:

Final project Status

Currently, the following functionality has been added to Cppyy’s Numba extension:

Extended typing and non type template definition support [Test 9]
nJIT function pointers to C++ functions that return a reference type [Test 10]
nJIT support for pointers and reference types to builtins and std::vectors [Test 11- 13]
nJIT(non-boxing calls) for Eigen templated classes passed-by-ref [Test 14]

Pull Requests during GSoC:

https://github.com/wlav/cppyy/pull/177

https://github.com/wlav/cppyy-backend/pull/11

https://github.com/wlav/cppyy-backend/pull/14

https://github.com/compiler-research/xeus-clang-repl/pull/56

https://github.com/compiler-research/xeus-clang-repl/pull/57

https://github.com/compiler-research/xeus-clang-repl/pull/58

https://github.com/compiler-research/xeus-clang-repl/pull/60

https://github.com/compiler-research/xeus-clang-repl/pull/61

https://github.com/compiler-research/xeus-clang-repl/pull/62

https://github.com/compiler-research/xeus-clang-repl/pull/63

Pointer and Reference Type Support

The Numba extension now supports njitting ref types, const refs and pointers to C++
methods/functions.

https://github.com/wlav/cppyy/pull/177
https://github.com/wlav/cppyy-backend/pull/11
https://github.com/wlav/cppyy-backend/pull/14
https://github.com/compiler-research/xeus-clang-repl/pull/56
https://github.com/compiler-research/xeus-clang-repl/pull/57
https://github.com/compiler-research/xeus-clang-repl/pull/58
https://github.com/compiler-research/xeus-clang-repl/pull/60
https://github.com/compiler-research/xeus-clang-repl/pull/61
https://github.com/compiler-research/xeus-clang-repl/pull/62
https://github.com/compiler-research/xeus-clang-repl/pull/63

The results are reflected directly on the python side using the ctypes interface that provides a
“pointer-like” behaviour that can be emulated in Python

The “pointer” like behavior is especially useful in cases like these:

The fact that Numba lowers Cppyy calls that use C++ pointers, to LLVM IR, opens an avenue of
significant speedup possibilities.

STD::VECTOR<>* and Numpy Arrays

We can explore those speedups by also adding pointer and reference support to std::vector objects

This is achieved by constructing IR Pointer Types to Array and Vector Types, that point to
cppyy.gbl.std.vector() objects linked to numpy arrays for initialization

Here the members of the BoxVector class are initialized via pass-by-ref within the python
function call:

Initial benchmarks with NumPy-C++ equivalent functions for the same operations:

Experiment
[Time in milliseconds]

NumPy
(Standard Python loop)

NumPy NJIT
(Equivalent LLVM IR)

Cppyy NJIT

1 0.19 246.39 0.042

2 0.22 291.74 0.058

3 77.95 368.68 17.94

4 92.36 374.97 20.38

Exploring vectorization speedups with a dot product operation:

Initialising using pointers and running the dot product through pass-by-ref. We can achieve an
even faster dot product by using the DotVector datamembers which are in turn std::vector

pointers:

Usage :

Some Benchmark Trends

Added Eigen Support

Templated class args like Eigen::Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> are resolved to
C++ types and successfully matches the CPPOverload. The Numba typeinfer of the Eigen
metaclass is refactored into the C++ expression and handled in numba2cpp . This support currenbtly
works only for Eigen::Dense .

Dispatcher typeinfer :

CppClass(Eigen::Matrix<double,-1,-1,0,-1,-1>)

Exciting Results with Eigen:

- The overhead of crossing the language barrier is eliminated:

- Comparison with NumPy np.dot for the same matrix dimensions:

© 2023 Aaron Jomy. Made with Jekyll using the Tale theme.

← Top

https://github.com/chesterhow/tale/
https://maximusron.github.io/2023-09-30/Understanding-the-Higgs-Field

